reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zuDiesen Artikel senden wir Ihnen ohne weiteren Aufpreis als PAKET

Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters
(Englisch)
Developments in Cardiovascular Medicine 182
Morad, M. & Ebashi, S. & Trautwein, W. & Kurachi, Yoshihisa

Print on Demand - Dieser Artikel wird für Sie gedruckt!

248,95 €

inkl. MwSt. · Portofrei
Dieses Produkt wird für Sie gedruckt, Lieferzeit ca. 14 Werktage
Menge:

Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters

Seiten
Erscheinungsdatum
Auflage
Ausstattung
Erscheinungsjahr
Sprache
Serienfolge
Vertrieb
Kategorie
Buchtyp
Warengruppenindex
Features
Laenge
Breite
Hoehe
Gewicht
Herkunft
Relevanz
Referenznummer
Moluna-Artikelnummer

Produktbeschreibung

Knowledge of cardiac ion channels and transporters has advanced remarkably in the last two decades with the development of patch-clamp and molecular biological techniques. This textbook offers a comprehensive overview of structures and functions of ion channels and transporters in the heart. Readers are first introduced to the molecular biology and electrophysiology of all the important ion channels. After discussing their developmental changes, the pharmacology and pathophysiology of clinically-relevant ion channels are reviewed. Molecular aspects of the cardiac excitation-contraction coupling and intracellular Ca2+ regulation by ion transporters are also described. The book will be useful to electrophysiologists, cardiac physiologists and pharmacologists, and molecular biologists interested in ion channels at all levels. For research specialists, the book will provide a perspective of the field. The book can be used as a reference source for working scientists in the fields of ion channels, biophysics, cardiac electrophysiology, and pharmacology. It is aimed at graduate and medical students, designed for use as a textbook for graduate and medical courses.
Preface. Thoughts of my Friend, Hiroshi Irisawa; S. Ebashi. Dr Hiroshi Irisawa during his Youth and Physiology; I. Seyama. Part One: Section I: Channels and Channel Proteins. 1. Introduction. 2. A Pacemaker Channel. 3. The Cardiac N+ Channel. 4. The L-Type Cardiac Ca2+ Channel. 5. The Cardiac K+ Channels. 6. Cardiac Cl- Channels. 7. Cardiac Ion Channels Not Gated by Voltage. Section II: Ion Channels in Cardiovascular Development. Section III: Pharmacology of Ion Channels. Section IV: Ion Channels and Cardiac Pathology. Part Two: Section One: Molecular Aspects of Ca2+ Release. Section II: Molecular Steps in Cardiac Relaxation. 2. Molecular Biology and Physiology of Na+-Ca2+ Exchange. 3. Contraction-Relaxation Regulation. Section III: Regulation of Celluar Ca2+ by Other Transporters. Index.

One.- Section I: Channels and channel proteins.- 1: Introduction.- 1. Overview: channels and channel proteins.- 2: A pacemaker channel.- 2. The hyperpolarization-activated inward channel and cardiac pacemaker activity.- 3. The hyperpolarization-activated (If) current: autonomic regulation and the control of pacing.- 3: The cardiac Na+ channel.- 4. Current understanding of the structure of the voltage gated sodium channel.- 5. ?-adrenergic regulation of cardiac Na+ channel.- 4: The L-type cardiac Ca2+ channel.- 6. L-type calcium channel structure and function.- 7. L-type Ca channel biophysics.- 8. ?-adrenergic and muscarinic regulation of L-type calcium current.- 9. Regulation of cardiac Ca2+ channels by cGMP and NO.- 5: The cardiac K+ channel.- 10. Diversity of voltage-dependent K channels.- 11. Cloned human heart delayed rectifier K+ channels.- 12. Primary structure and biophysical properties of inward rectifying K+ channel family.- 13. Ca2+-dependent transient outward current in mammalian heart.- 14. Delayed potassium channels in the heart: regulatory and molecular properties.- 15. Muscarinic and purinergic regulation of cardiac K+ channels.- 6: Cardiac Cl? channels.- 16. Chloride channels in heart.- 7: Cardiac ion channels not gated by voltage.- 17. Properties of cardiac ATP-sensitive potassium channels.- 18. Physiological and molecular properties of cardiac gap junctions.- 19.Volume-regulated cardiac ion channels.- 20. Regulation of cardiac activity by ATP, a purine agonist.- Section II: Ion channels in cardiovascular development.- 1.- 21. Developmental aspects of cardiac ion channels.- 22. Developmental changes and regulation of L-type calcium channels of myocardial cells and vascular smooth muscle cells.- Section III: Pharmacology of ion channels.- 1.- 23.Pharmacology of the calcium channel antagonists.- 24. Interactions of calcium antagonists and agonists with calcium channels in muscle cells.- 25. Pharmacological regulation of the cardiac ATP-sensitive K+ channel.- 26. Fatty acids and cardiac K+ channels.- 27. Sodium channels and block.- Section IV: Ion channels and cardiac pathology.- 1.- 28. Afterdepolarizations triggered rhythms and cardiac arrhythmias.- 29. Transient inward current and triggered activity.- 30. The Na+-activated K+ channel.- 31. Regulation of cardiac ATP-sensitive K channels during ischemia, hypoxia and impaired metabolism.- Two.- Section I: Molecular aspects of Ca2+ release.- 1.- 32. Signaling of calcium release in cardiac muscle.- 33. Local calcium transients in voltage-clamped cardiac cells: evoked 'calcium sparks'.- 34. Sarcoplasmic recticulum ryanodine receptor/Ca2+ release channel: a functional perspective.- 35. Molecular structure of calcium release channels.- Section II: Molecular steps in cardiac relaxation.- 1.- 36. Sarcoplasmic reticulum Ca2+ ATPases.- 37. Molecular structure and function of phospholamban.- 2: Molecular biology and physiology of Na+-Ca2+ exchange.- 38. Na+-Ca2+ exchanger: molecular aspects.- 39. Na/Ca exchanger: molecular and cellular characteristics.- 40. The functional significance of sodium-calcium exchange.- 41.The physiology of the Na-Ca exchange.- 3: Contraction-relaxation regulation.- 42. Regulation of cardiac relaxation.- 43. Evaluation of changes in myofibrillar Ca2+ sensitivity in intact cardiac cells.- 44. ?-Adrenergic receptor-dependent regulation of myocardial contractility.- 45. Ca transport from the cytoplasm and dynamic cellular Ca balance in cardiac myocytes.- Section III: Regulation of cellular Ca2+ by other transporters.- 1.- 46. Regulation ofintracellular protons: role of Na/H exchange in cardiac myocytes.- 2.- 47. Magnesium homeostasis and cardiac cell function.- 3.- 48. Na-K pump: multiple isoforms and their roles in cardiac functions.

Inhaltsverzeichnis



Preface. Thoughts of my Friend, Hiroshi Irisawa; S. Ebashi. Dr Hiroshi Irisawa during his Youth and Physiology; I. Seyama. Part One: Section I: Channels and Channel Proteins. 1. Introduction. 2. A Pacemaker Channel. 3. The Cardiac N+ Channel. 4. The L-Type Cardiac Ca2+ Channel. 5. The Cardiac K+ Channels. 6. Cardiac Cl- Channels. 7. Cardiac Ion Channels Not Gated by Voltage. Section II: Ion Channels in Cardiovascular Development. Section III: Pharmacology of Ion Channels. Section IV: Ion Channels and Cardiac Pathology. Part Two: Section One: Molecular Aspects of Ca2+ Release. Section II: Molecular Steps in Cardiac Relaxation. 2. Molecular Biology and Physiology of Na+-Ca2+ Exchange. 3. Contraction-Relaxation Regulation. Section III: Regulation of Celluar Ca2+ by Other Transporters. Index.


Klappentext

Knowledge of cardiac ion channels and transporters has advanced remarkably in the last two decades with the development of patch-clamp and molecular biological techniques. This textbook offers a comprehensive overview of structures and functions of ion channels and transporters in the heart. Readers are first introduced to the molecular biology and electrophysiology of all the important ion channels. After discussing their developmental changes, the pharmacology and pathophysiology of clinically-relevant ion channels are reviewed. Molecular aspects of the cardiac excitation-contraction coupling and intracellular Ca2+ regulation by ion transporters are also described. The book will be useful to electrophysiologists, cardiac physiologists and pharmacologists, and molecular biologists interested in ion channels at all levels. For research specialists, the book will provide a perspective of the field. The book can be used as a reference source for working scientists in the fields of ion channels, biophysics, cardiac electrophysiology, and pharmacology. It is aimed at graduate and medical students, designed for use as a textbook for graduate and medical courses.




Springer Book Archives



Datenschutz-Einstellungen