reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zuDiesen Artikel senden wir Ihnen ohne weiteren Aufpreis als PAKET

Biophysics and the Challenges of Emerging Threats
(Englisch)
NATO Science for Peace and Security Series
Puglisi, Joseph

Print on Demand - Dieser Artikel wird für Sie gedruckt!

127,45 €

inkl. MwSt. · Portofrei
Dieses Produkt wird für Sie gedruckt, Lieferzeit ca. 14 Werktage
Menge:

Biophysics and the Challenges of Emerging Threats

Medium
Seiten
Erscheinungsdatum
Auflage
Erscheinungsjahr
Sprache
Abbildungen
Vertrieb
Kategorie
Buchtyp
Warengruppenindex
Warengruppe
Detailwarengruppe
Features
Laenge
Breite
Hoehe
Gewicht
Herkunft
Relevanz
Referenznummer
Moluna-Artikelnummer

Produktbeschreibung

Proceedings of the NATO Advanced Study Institute on Biophysics and the Challenges of Emerging ThreatsErice, Sicily, Italy19-30 June 2007|

Presents state of the art information on NMR spectroscopy, and its place in the broader field of biophysics

No other monograph presents such a wide range of topics, including NMR spectroscopy, protein folding, X-ray crystallography, spectroscopy and applications


Single-molecule techniques eliminate ensemble averaging, thus revealing transient or rare species in heterogeneous systems [1–3]. These approaches have been employed to probe myriad biological phenomena, including protein and RNA folding [4–6], enzyme kinetics [7, 8], and even protein biosynthesis [1, 9, 10]. In particular, immobilization-based fluorescence te- niques such as total internal reflection fluorescence microscopy (TIRF-M) have recently allowed for the observation of multiple events on the millis- onds to seconds timescale [11–13]. Single-molecule fluorescence methods are challenged by the instability of single fluorophores. The organic fluorophores commonly employed in single-molecule studies of biological systems display fast photobleaching, intensity fluctuations on the millisecond timescale (blinking), or both. These phenomena limit observation time and complicate the interpretation of fl- rescence fluctuations [14, 15]. Molecular oxygen (O) modulates dye stability. Triplet O efficiently 2 2 quenches dye triplet states responsible for blinking. This results in the for- tion of singlet oxygen [16–18]. Singlet O reacts efficiently with organic dyes, 2 amino acids, and nucleobases [19, 20]. Oxidized dyes are no longer fluor- cent; oxidative damage impairs the folding and function of biomolecules. In the presence of saturating dissolved O , blinking of fluorescent dyes is sup- 2 pressed, but oxidative damage to dyes and biomolecules is rapid. Enzymatic O -scavenging systems are commonly employed to ameliorate dye instability. 2 Small molecules are often employed to suppress blinking at low O levels.
Preface.- List of Contributors.- A Simple Model for Protein Folding; E.R. Henry, W.A. Eaton.- Complementarity of Hydrophobic/Hydrophilic Properties in Protein Ligand Complexes: A New Tool to Improve Docking Results; T.V. Pyrkov et al.- Structures of Cvnh Family Lectins; A.M. Gronenborn.- Biohysical Approaches to Study DNA Base Flipping; S. Klimasauskas et al.- The Diversity of Nuclear Magnetic Resonance Spectroscopy; C.W. Liu.- Improved Dye Stability in Single-Molecule Fluorescence Experiments; C.E. Aitken et al.- The Evaluation of Isotope Editing and Filtering for Protein-Ligand Interaction Elucidation by NMR; I.M. Robertson et al.- Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation; A. Yonath.- Course Abstracts and Posters.- Author Index.-

Single-molecule techniques eliminate ensemble averaging, thus revealing transient or rare species in heterogeneous systems [1-3]. These approaches have been employed to probe myriad biological phenomena, including protein and RNA folding [4-6], enzyme kinetics [7, 8], and even protein biosynthesis [1, 9, 10]. In particular, immobilization-based fluorescence te- niques such as total internal reflection fluorescence microscopy (TIRF-M) have recently allowed for the observation of multiple events on the millis- onds to seconds timescale [11-13]. Single-molecule fluorescence methods are challenged by the instability of single fluorophores. The organic fluorophores commonly employed in single-molecule studies of biological systems display fast photobleaching, intensity fluctuations on the millisecond timescale (blinking), or both. These phenomena limit observation time and complicate the interpretation of fl- rescence fluctuations [14, 15]. Molecular oxygen (O) modulates dye stability. Triplet O efficiently 2 2 quenches dye triplet states responsible for blinking. This results in the for- tion of singlet oxygen [16-18]. Singlet O reacts efficiently with organic dyes, 2 amino acids, and nucleobases [19, 20]. Oxidized dyes are no longer fluor- cent; oxidative damage impairs the folding and function of biomolecules. In the presence of saturating dissolved O , blinking of fluorescent dyes is sup- 2 pressed, but oxidative damage to dyes and biomolecules is rapid. Enzymatic O -scavenging systems are commonly employed to ameliorate dye instability. 2 Small molecules are often employed to suppress blinking at low O levels.
A Simple Model for Protein Folding.- Complementarity of Hydrophobic/Hydrophilic Properties In Protein-Ligand Complexes: A New Tool to Improve Docking Results.- Structures of Cvnh Family Lectins.- Biophysical Approaches To Study Dna Base Flipping.- The Diversity of Nuclear Magnetic Resonance Spectroscopy.- Improved Dye Stability in Single-Molecule Fluorescence Experiments.- The Evaluation of Isotope Editing and Filtering for Protein-Ligand Interaction Elucidation by Nmr.- Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation.

Inhaltsverzeichnis



A Simple Model for Protein Folding.- Complementarity of Hydrophobic/Hydrophilic Properties In Protein-Ligand Complexes: A New Tool to Improve Docking Results.- Structures of Cvnh Family Lectins.- Biophysical Approaches To Study Dna Base Flipping.- The Diversity of Nuclear Magnetic Resonance Spectroscopy.- Improved Dye Stability in Single-Molecule Fluorescence Experiments.- The Evaluation of Isotope Editing and Filtering for Protein-Ligand Interaction Elucidation by Nmr.- Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation.


Klappentext

Single-molecule techniques eliminate ensemble averaging, thus revealing transient or rare species in heterogeneous systems [1-3]. These approaches have been employed to probe myriad biological phenomena, including protein and RNA folding [4-6], enzyme kinetics [7, 8], and even protein biosynthesis [1, 9, 10]. In particular, immobilization-based fluorescence te- niques such as total internal reflection fluorescence microscopy (TIRF-M) have recently allowed for the observation of multiple events on the millis- onds to seconds timescale [11-13]. Single-molecule fluorescence methods are challenged by the instability of single fluorophores. The organic fluorophores commonly employed in single-molecule studies of biological systems display fast photobleaching, intensity fluctuations on the millisecond timescale (blinking), or both. These phenomena limit observation time and complicate the interpretation of fl- rescence fluctuations [14, 15]. Molecular oxygen (O) modulates dye stability. Triplet O efficiently 2 2 quenches dye triplet states responsible for blinking. This results in the for- tion of singlet oxygen [16-18]. Singlet O reacts efficiently with organic dyes, 2 amino acids, and nucleobases [19, 20]. Oxidized dyes are no longer fluor- cent; oxidative damage impairs the folding and function of biomolecules. In the presence of saturating dissolved O , blinking of fluorescent dyes is sup- 2 pressed, but oxidative damage to dyes and biomolecules is rapid. Enzymatic O -scavenging systems are commonly employed to ameliorate dye instability. 2 Small molecules are often employed to suppress blinking at low O levels.




Presents state of the art information on NMR spectroscopy, and its place in the broader field of biophysics

No other monograph presents such a wide range of topics, including NMR spectroscopy, protein folding, X-ray crystallography, spectroscopy and applications

leseprobe



Datenschutz-Einstellungen