reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zu

Prüfungstrainer Lineare Algebra
625 Fragen und Antworten für Bachelor und Vordiplom
Busam, Rolf & Epp, Thomas

27,99 €

inkl. MwSt. · Portofrei
Lieferzeit 4-5 Werktage
Menge:

Produktbeschreibung

Dieser "Prüfungstrainer" wendet sich an Studierende mit Mathematik als Haupt- oder Nebenfach, die - insbesondere bei der Prüfungs- oder Klausurvorbereitung - den Wunsch verspüren, als Ergänzung zu den Lehrbüchern den Grundstudiums-Stoff der Linearen Algebra noch einmal in pointierter Form vorliegen zu haben, zugespitzt auf dasjenige, was man wirklich wissen und beherrschen sollte, um eine Prüfung erfolgreich zu bestehen und exakte Antworten auf mögliche Fragen formulieren zu können.

Vorwort.-
1 Algebraische Grundlagen.- 1.1 Der Begriff der Gruppe. 1.2 Abbildungen zwischen Gruppen und Untergruppen. 1.3 Der Signum-Homomorphismus. 1.4 Ringe und Körper. 1.5 Polynomringe.-
2 Vektorräume.- 2.1 Grundbegriffe. 2.2 Basis und Dimension. 2.3 Direkte Summen von Vektorräumen. 2.4 Affine Unterräume.-
3 Lineare Abbildungen und Matrizen.- 3.1 Grundbegriffe. 3.2 Der Dualraum. 3.3 Quotientenvektorräume. 3.4 Matrizen. 3.5 Matrizenringe. 3.6 Koordinatenisomorphismen und Basiswechselformalismus. 3.7 Das Gauß'sche Eleminationsverfahren. 3.8 Lineare Gleichungssysteme.-
4 Determinanten.- 4.1 Alternierende Multilinearformen. 4.2 Determinanten von Matrizen und Endomorphismen-
5 Normalformentheorie.- 5.1 Eigenwerte und Eigenvektoren. 5.2 Das charakteristische Polynom. 5.3 Einsetzen von Matrizen und Endomorphismen in Polynome. 5.4 Die Jordan'sche Normalform.-
6 Euklidische und unitäre Vektorräume.- 6.1 Bilinearformen und Skalarprodukte. 6.2 Normierte Räume. 6.3 Orthonormalbasen und das Orthonormalisierungsverfahren von Gram-Schmidt. 6.4 Lineare Gleichungssysteme revisited. 6.5 Orthogonale und unitäre Endomorphismen. 6.6 Adjungierte Abbildungen. 6.7 Selbstadjungierte Abbildungen.-
7 Anwendungen in der Geometrie. 7.1 Affine Räume und Abbildungen. 7.2 Projektive Räume. 7.3 Projektive Quadriken. 7.4 Affine Quadriken.-
Literatur.-
Symbolverzeichnis.-
Namen- und Sachverzeichnis.-
Dr. Rolf Busam ist wissenschaftlicher Mitarbeiter am Mathematischen Institut der Universität Heidelberg, hält dort seit langen Jahren die Analysis-Vorlesungen und ist mitverantwortlich für die Lehrerausbildung. Thomas Epp hat an der HU Berlin Mathematik und Philosophie studiert.
3

Über den Autor



Dr. Rolf Busam ist wissenschaftlicher Mitarbeiter am Mathematischen Institut der Universität Heidelberg, hält dort seit langen Jahren die Analysis-Vorlesungen und ist mitverantwortlich für die Lehrerausbildung. Thomas Epp hat an der HU Berlin Mathematik und Philosophie studiert.


Klappentext



PDieser "Prüfungstrainer" wendet sich an Studierende mit Mathematik als Haupt- oder Nebenfach, die - insbesondere bei der Prüfungs- oder Klausurvorbereitung - den Wunsch verspüren, als Ergänzung zu den Lehrbüchern den Grundstudiums-Stoff der Linearen Algebra noch einmal in pointierter Form vorliegen zu haben, zugespitzt auf dasjenige, was man wirklich wissen und beherrschen sollte, um eine Prüfung erfolgreich zu bestehen und exakte Antworten auf mögliche Fragen formulieren zu können./P




Dieser "Prüfungstrainer" wendet sich an Studierende mit Mathematik als Haupt- oder Nebenfach, die - insbesondere bei der Prüfungs- oder Klausurvorbereitung - den Wunsch verspüren, als Ergänzung zu den Lehrbüchern den Grundstudiums-Stoff der Linearen Algebra noch einmal in pointierter Form vorliegen zu haben, zugespitzt auf dasjenige, was man wirklich wissen und beherrschen sollte, um eine Prüfung erfolgreich zu bestehen und exakte Antworten auf mögliche Fragen formulieren zu können.



In einem konzisen Frage-Antworten-Stil werden die zentralen Begriffe und Beweise der Linearen Algebra wiederholt. Mehr noch als auf die Rechenfähigkeit (die sicherlich auch notwendig ist und nicht zu kurz kommt) wird Wert auf das Verständnis wichtiger Konzepte gelegt, deren grundsätzliche Bedeutung durch viele Querverweise auf Anwendungen in anderen Gebieten der Mathematik sowie der Natur- und Computerwissenschaften illustriert wird. Dem Autorenduo - einem Dozenten mit langjähriger Vorlesungs- und Prüfungserfahrung und einem Mathematikabsolventen - ist es sehr gut gelungen, mit der Auswahl der Fragen ein realistisches Bild davon zu vermitteln, was einen Studenten in der mündlichen Prüfung oder einer Klausur typischerweise erwartet.



Durch die Gliederung des Stoffes in einzelne Fragen eignet sich das Buch ausgezeichnet dazu, Wissen stichpunktartig zu trainieren und zu überprüfen; auch höhere Semester können davon profitieren, wenn sie schon einmal Gelerntes noch einmal gezielt nachschlagen wollen. Eine besondere Attraktion stellen die zahlreichen Abbildungen dar, die geometrische Sachverhalte veranschaulichen.