reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zuDiesen Artikel senden wir Ihnen ohne weiteren Aufpreis als PAKET

Topics in Nonlinear Physics
(Englisch)
Proceedings of the Physics Session, International School of Nonlinear Mathematics and Physics. A NATO Advanced Study Institute Max-Planck-Institute for Physics and Astrophysics (Munich, 1966)
Zabusky, N. J.

Print on Demand - Dieser Artikel wird für Sie gedruckt!

44,95 €

inkl. MwSt. · Portofrei
Dieses Produkt wird für Sie gedruckt, Lieferzeit ca. 14 Werktage
Menge:

Topics in Nonlinear Physics

Produktbeschreibung

Nonlinear Problems in Physics.- Nonlinear Problems in Physics.- The Nonlinear Field Theories in Mechanics.- 1. Thermodynamics of Homogeneous Processes.- Temperature and Heat.- Homogeneous Processes.- The Thermodynamic State.- Thermodynamic Processes.- Histories.- Thermodynamic Constitutive Equations.- Example 1. The Classical Caloric Equations of State.- 2. Kinematics. Changes of Frame.- Geometry.- Primitive Elements of Thermomechanics.- Bodies, Configurations, Motions.- Mass Density.- Reference Configuration.- Deformation Gradient.- Change of Reference Configuration.- Current Configuration as Reference.- Stretch and Rotation.- Stretching and Spin.- Changes of Frame.- 3. Force and Work, Laws of Motion.- Physical Principles of Mechanics.- Forces and Moments in Continuum Mechanics.- Momentum and Moment of Momentum.- The Euler-Cauchy Stress Principle.- Energy and Heat Work.- Equations of Balance.- Differential Equations of Continuum Mechanics.- 4. Constitutive Equations. Simple Materials.- Nature of Constitutive Equations.- Equivalent Processes.- Constitutive Equations.- Axioms for Constitutive Equations.- Simple Materials.- Exercise 4.1 (Zaremba-Noll Theorem).- Reduction for Material Frame-Indifference.- Internal Constraints.- 5. The Isotropy Group.- Isotropy Group.- Orthogonal Part of the Isotropy Group.- Change of Reference Configuration.- 6. Solids, Isotropic Materials, Fluids, Fluid Crystals.- Main Properties of the Isotropy Group.- Isotropic Materials.- Solids.- Fluids.- Fluid Crystals.- 7. Motions with Constant Stretch History.- Definition.- Noll´s Theorem.- Determination of the Deformation History from the First Three Rivlin-Ericksen Tensors.- Equivalence of Simple Materials with Rivlin-Ericksen Materials in Motions with Constant Stretch History.- Classification of Motions with Constant Stretch History.- 8. The Stress System in Viscometric Flows of Incompressible Fluids.- Recapitulation.- Functional Equations for the Response Function.- Illustration by Means of Shearing Flow.- Consequences of Invariance Under Reflections.- The Viscometric Functions. Normal-Stress Effects.- Position of the Classical Theory.- 9. Dynamical Conditions in Viscometric Flows.- Recapitulation.- Dynamic Compatibility.- Shearing Flow.- Channel Flow.- Helical Flows.- Flow Between Rotating Cylinders.- Flow in a Circular Pipe.- Other Viscometric Flows.- 10. Impossibility of Rectilinear Plow in Pipes.- Problem.- Explicit Constitutive Equation.- Dynamical Equation.- Compatibility.- 11. Elastic Materials.- Statics of Simple Materials.- Reduction for Frame-Indifference.- Elastic Fluids.- Natural States.- Isotropic Elastic Materials.- Unconstrained Bodies.- Incompressible Bodies.- Remarks.- 12. Non-Homogeneous Universal Solutions for Incompressible Elastic Bodies.- Universal Solutions.- List of the Universal Solutions.- Inflation or Eversion, Torsion, and Extension of a Cylinder.- Torsion and Tension of a Solid Cylinder.- Eversion.- Remarks on Method.- 13. Hyperelastic Materials.- The Piola-Kirchhoff Stress Tensor.- Definition of a Hyperelastic Material.- The Two Isotropy Groups.- Minimum of the Stored-Energy Function.- Need for an A Priori Inequality.- Coleman and Noll´s Inequality.- 14. Work Theorems in Hyperelasticity.- Nonsense About Perpetual Motion.- Virtual Work of the Traction on the Boundary.- Homogeneous Processes in Homogeneous Bodies.- The First Work Theorem.- The Second Work Theorem.- The Third Work Theorem.- 15. Thermomechanics. Equipresence.- Fading Memory.- Thermodynamics and Continuum Mechanics Reviewed.- General Principles of the Thermomechanics of Continua.- Thermodynamic Process.- Constitutive Equations. Equipresence.- The Clausius-Duhem Inequality.- The Reduced Dissipation Inequality.- Simple Thermodynamic Materials.- 16. Thermodynamics of Simple Materials with Fading Memory.- Quasi-Elastic Response. Fading Memory.- Dissipation and Quasi-Elastic Response.- Applications.- A Final Remark on the Stored-Energy Function in Elasticity.- 17. Wave Motions. Compatibility.- The Nature of Wave Motions.- Hadamard´s Lemma.- Singular Surfaces.- Singular Surfaces for a Motion.- Compatibility Conditions for Second-Order Singular Surfaces.- Equation of Balance at a Singular Surface.- Acceleration Waves in Elasticity.- Weak Singular Surfaces in General.- 18. Wave Propagation in Dissipative Materials.- The "Smoothing” Effect of Dissipation.- Waves and Quasi-Elastic Response.- Relation Between the Homo-thermal and Homentropic Acoustic Tensors.- Waves in Non-Conductors.- Waves in Definite Conductors.- Closure.- to Nonequilibrium Statistical Physics.- 1. Introduction.- References.- 2. Phenomenological Approach — Thermodynamics of Irreversible Processes.- References.- 3. Statistical Mechanics — General Method.- a) Introduction.- b) Liouville Equation.- c) Free Particles.- d) Potential Scattering.- e) General Theory.- f) General Evolution Equation.- g) Transformation Theory of the Kinetic Equation.- h) Correlations.- References.- 4. Boltzmann Situations.- a) Anharmonlc Solids.- b) Brownlan Motion.- References.- 5. Generalized Boltzmann Situations.- a) The Three-Body Problem.- b) Strongly Coupled Systems.- c) The RenormallzatIon Program.- Strongly Coupled Anharmonlc Oscillators.- d) Plön Production in Baryon-Pion Scattering with a p-Meson in the Intermediate Stage.- e) Relation with S-Matrix Theory.- References.- 6. NonBoltzmann Situations.- a) General Remarks.- b) Harmonic Lattices.- c) Heisenberg Spin Systems.- d) Gravitational Plasmas.- References.- 7. Irreversibility.- a) Introduction.- b) Discussion of Zermelo´s Paradox.- c) Discussion of Loschmidt´s Paradox.- d) Meaning of Irreversibility.- References.- 8. Entropy.- a) Thermodynamic Entropy and Statistical Mechanics.- b) Entropy in Strongly Coupled Anharmonic Oscillators -Disorder and Entropy.- c) Canonical Entropy and Resonance Effects.- d) Numerical Calculations.- References.- 9. Concluding Remarks.- References.- Appendix I. The General Evolution Equation and Projection Operators.- References.- Appendix II. Nonanalytic Density Behavior of Transport Coefficients.- References.- Interactions in a Classical Relativistic Plasma.- Preface.- 1. Introduction.- 2. Lorentz-Invariant Statistical Mechanical Formalism for a Classical Relativistlc Plasma Interacting with an Electromagnetic Field.- a) Introduction.- b) Lorentz-Invariant Formalism.- c) Perturbation Treatment of the Liouville Equation.- 3. Formal Approach to the Phenomenological Electrodynamics of Plasmas.- 4. Kinetic Approach to the Electrodynamics of Homogeneous Systems.- a) Kinetic Equations.- b) General Deillegalscription of a Plasma Within the Ring Approximation.- b.1 Self-energy.- b.2 Relativistic Landau Equation.- b.3 General Ring Equations.- b.4 Ring Equations for Stable Systems.- b.5 Ring Equations for Unstable Systems.- c) Typical Radiation Processes.- c.1 Thomson Scattering.- c.2 Normal and Anomalous BremsStrahlung.- 5. Kinetic Approach to Phenomenological Radiation Laws for Homogeneous Systems.- a) General Radiation Transfer Equation.- b) Relation Between Absorption Coefficient and Electrical Conductivity.- References.- Nonlinear Optics.- 1. Phenomenological Survey of Nonlinear Optical Effects.- 1.1 The Anharmonic Oscillator as a Classical Model of Nonlinearity.- 1.2 Nonlinear Source Terms.- 1.3 Nonlinearities in Media with Inversion Symmetry and in Isotropic Media.- 2. Wave Propagation in Nonlinear Media.- 2.1 The Nonlinear Wave Equation.- 2.2 Bogoliubov´s Method for a One-dimensional Nonlinear Mechanical System.- 2.3 The Secular and Nonsecular Behavior of the Wave Equation.- 3. Boundary Conditions and Coupling Between Light Waves in a Dispersive Medium.- 3.1 Parametric Generation.- 3.2 Secular Harmonic Conversion.- 3.3 The Propagation of a Wave in a Medium with a Complex Intensity Dependent Index of Refraction.- 3.4 Saturable Absorber.- 3.5 Second Harmonic Generation in Dissipative Crystals Without Inversion Symmetry.- 4. Stimulated Brillouin, Raman and Rayleigh Scattering Effects.- 4.1 Self-Focusing of the Laser Beam.- 4.2 Parametric Down Conversion.- 4.3 The Stimulated Raman Scattering as a Parametric Process.- 5. Quantum Mechanical Calculation of Nonlinear Susceptibilities. Lamb´s Theory of Coupled Laser Modes.- 5.1 The Coupling of One Electromagnetic Mode with Independent Particles with Two Energy Levels.- 5.2 Quantum Mechanical Calculation of Nonlinear Susceptibilities.- 5.3 Oscillation in a Single Mode.- 5.4 Two Oscillating Modes.- 5.5 Three Coupled Modes in a Gas Laser.- Lectures on Homogeneous Turbulence.- Preface.- 1. Introduction.- Diffusive Property of Turbulence.- Strong Nonlinearity.- Intermittency.- Homogeneous Turbulence.- Appendix 1..- 2. The Deillegalscription of Homogeneous Turbulence.- Correlation Tensors.- Spectral Tensors.- The Probability Distribution.- Formulation of the Problem of Homogeneous Turbulence.- Isotropic Turbulence.- Do All Mean Values Exist?.- 3. Structure and Invariance of the Large Eddies.- Fourier Analysis of the Velocity Field.- Form of the Energy Spectrum Tensor for Small Wavenumber.- The Form of the Velocity Correlation Tensor at Large Separation.- The Case C=0.- Stationary Homogeneous Turbulence.- 4. The Problem of Decay.- The Generation of Vorticity.- 5. The Universal Equilibrium Theory (Kolmogorov).- Deductions.- Inertial Subrange.- Experimental Evidence.- Alternative Explanation of the Dependence on ? and v and the k-5/3 Dependence.- 6. "Burgerlence”.- Decay of a Single Pulse.- Decay of a Periodic Train of Pulses.- Decay of a General Disturbance.- The Spectrum Function.- Simple Derivation of the Qualitative Dependence.- The Kolmogorov Length in Burgerlence.- 7. The Structure of Turbulence.- Two Exact Solutions of the Navier-Stokes Equations.- Random Collections of Sheets and Tubes.- A Model of Turbulent Motion.- Predictions of the Model.- Remarks.- 8. Quasianalytical Theories of Turbulence.- Theories Based on Physical Approximations.- The Joint Normal Approximation or Zero Fourth-Order Cumulant Hypothesis.- The Wiener-Hermite Expansion.- The Kraichnan Direct Interaction Approximation.- 9. Concluding Remarks.- References.- Superspace and the Nature of Quantum Geometrodynamics.- Allowable History Selected out of Arena of Dynamics by Constructive Interference.- Three Dimensions, Not Four.- Superspace.- Wave Packet in Superspace and its Propagation.- "Spacetime” a Concept of Limited Validity.- The Planck Length and Gravitational Collapse.- Quantum Fluctuations in Geometry of Space.- Fluctuations Superposed on Classical Background.- Extrapolate Geometrodynamics to the Planck Scales of Distances?.- Electricity as Lines of Force Trapped in the Topology of Space.- The Energy of the Vacuum.- A Particle as a Geometrodynamical Exciton.- Problem 1. "Derivation” of "Einstein-Hamilton-Jacobi Equation”.- Subillegalscript on Relation of Hamilton-Jacobi Method to Conventional Analytic Solutions of Field Equations.- Problem 2. Structure of Superspace.- Level 1. Classical Geometrodynamics; Topology Does Not Change.- Fixed Topology Excludes GMD Account of Particles and Fields.- Formalism of Field When Treated as "Foreign and Physical”.- Level 2. Space Resonating Between 3-Geometries of Varied Topology.- The Orientation Entanglement Relation or "Version”.- Alternative Spin Structures in a Multiply Connected Space.- The Multisheeted Character of Superspace.- Electromagnetlsm as a Statistical Aspect of Geometry? Other Questions.- The Example of 2-Geometries.- Other Aspects of Superspace.- Tangent Vectors on Superspace and the Classical Initial Value Problem.- Level 3. Pregeometry.- Problem 3. Initial Conditions.- References.

Nonlinear Problems in Physics.- Nonlinear Problems in Physics.- The Nonlinear Field Theories in Mechanics.- 1. Thermodynamics of Homogeneous Processes.- 2. Kinematics. Changes of Frame.- 3. Force and Work, Laws of Motion.- 4. Constitutive Equations. Simple Materials.- 5. The Isotropy Group.- 6. Solids, Isotropic Materials, Fluids, Fluid Crystals.- 7. Motions with Constant Stretch History.- 8. The Stress System in Viscometric Flows of Incompressible Fluids.- 9. Dynamical Conditions in Viscometric Flows.- 10. Impossibility of Rectilinear Plow in Pipes.- 11. Elastic Materials.- 12. Non-Homogeneous Universal Solutions for Incompressible Elastic Bodies.- 13. Hyperelastic Materials.- 14. Work Theorems in Hyperelasticity.- 15. Thermomechanics. Equipresence.- 16. Thermodynamics of Simple Materials with Fading Memory.- 17. Wave Motions. Compatibility.- 18. Wave Propagation in Dissipative Materials.- to Nonequilibrium Statistical Physics.- 1. Introduction.- 2. Phenomenological Approach - Thermodynamics of Irreversible Processes.- 3. Statistical Mechanics - General Method.- 4. Boltzmann Situations.- 5. Generalized Boltzmann Situations.- 6. NonBoltzmann Situations.- 7. Irreversibility.- 8. Entropy.- 9. Concluding Remarks.- Appendix I. The General Evolution Equation and Projection Operators.- Appendix II. Nonanalytic Density Behavior of Transport Coefficients.- Interactions in a Classical Relativistic Plasma.- Preface.- 1. Introduction.- 2. Lorentz-Invariant Statistical Mechanical Formalism for a Classical Relativistlc Plasma Interacting with an Electromagnetic Field.- 3. Formal Approach to the Phenomenological Electrodynamics of Plasmas.- 4. Kinetic Approach to the Electrodynamics of Homogeneous Systems.- 5. Kinetic Approach to Phenomenological Radiation Laws for HomogeneousSystems.- Nonlinear Optics.- 1. Phenomenological Survey of Nonlinear Optical Effects.- 2. Wave Propagation in Nonlinear Media.- 3. Boundary Conditions and Coupling Between Light Waves in a Dispersive Medium.- 4. Stimulated Brillouin, Raman and Rayleigh Scattering Effects.- 5. Quantum Mechanical Calculation of Nonlinear Susceptibilities. Lamb's Theory of Coupled Laser Modes.- Lectures on Homogeneous Turbulence.- Preface.- 1. Introduction.- 2. The Deillegalscription of Homogeneous Turbulence.- 3. Structure and Invariance of the Large Eddies.- 4. The Problem of Decay.- 5. The Universal Equilibrium Theory (Kolmogorov).- 6. "Burgerlence".- 7. The Structure of Turbulence.- 8. Quasianalytical Theories of Turbulence.- 9. Concluding Remarks.- Superspace and the Nature of Quantum Geometrodynamics.- Allowable History Selected out of Arena of Dynamics by Constructive Interference.- Three Dimensions, Not Four.- Superspace.- Wave Packet in Superspace and its Propagation.- "Spacetime" a Concept of Limited Validity.- The Planck Length and Gravitational Collapse.- Quantum Fluctuations in Geometry of Space.- Fluctuations Superposed on Classical Background.- Extrapolate Geometrodynamics to the Planck Scales of Distances?.- Electricity as Lines of Force Trapped in the Topology of Space.- The Energy of the Vacuum.- A Particle as a Geometrodynamical Exciton.- Problem 1. "Derivation" of "Einstein-Hamilton-Jacobi Equation".- Problem 2. Structure of Superspace.- Fixed Topology Excludes GMD Account of Particles and Fields.- Formalism of Field When Treated as "Foreign and Physical".- The Orientation Entanglement Relation or "Version".- Alternative Spin Structures in a Multiply Connected Space.- The Multisheeted Character of Superspace.- Electromagnetlsm as a Statistical Aspectof Geometry? Other Questions.- The Example of 2-Geometries.- Other Aspects of Superspace.- Tangent Vectors on Superspace and the Classical Initial Value Problem.- Problem 3. Initial Conditions.- References.

Inhaltsverzeichnis



Nonlinear Problems in Physics.- Nonlinear Problems in Physics.- The Nonlinear Field Theories in Mechanics.- 1. Thermodynamics of Homogeneous Processes.- 2. Kinematics. Changes of Frame.- 3. Force and Work, Laws of Motion.- 4. Constitutive Equations. Simple Materials.- 5. The Isotropy Group.- 6. Solids, Isotropic Materials, Fluids, Fluid Crystals.- 7. Motions with Constant Stretch History.- 8. The Stress System in Viscometric Flows of Incompressible Fluids.- 9. Dynamical Conditions in Viscometric Flows.- 10. Impossibility of Rectilinear Plow in Pipes.- 11. Elastic Materials.- 12. Non-Homogeneous Universal Solutions for Incompressible Elastic Bodies.- 13. Hyperelastic Materials.- 14. Work Theorems in Hyperelasticity.- 15. Thermomechanics. Equipresence.- 16. Thermodynamics of Simple Materials with Fading Memory.- 17. Wave Motions. Compatibility.- 18. Wave Propagation in Dissipative Materials.- to Nonequilibrium Statistical Physics.- 1. Introduction.- 2. Phenomenological Approach - Thermodynamics of Irreversible Processes.- 3. Statistical Mechanics - General Method.- 4. Boltzmann Situations.- 5. Generalized Boltzmann Situations.- 6. NonBoltzmann Situations.- 7. Irreversibility.- 8. Entropy.- 9. Concluding Remarks.- Appendix I. The General Evolution Equation and Projection Operators.- Appendix II. Nonanalytic Density Behavior of Transport Coefficients.- Interactions in a Classical Relativistic Plasma.- Preface.- 1. Introduction.- 2. Lorentz-Invariant Statistical Mechanical Formalism for a Classical Relativistlc Plasma Interacting with an Electromagnetic Field.- 3. Formal Approach to the Phenomenological Electrodynamics of Plasmas.- 4. Kinetic Approach to the Electrodynamics of Homogeneous Systems.- 5. Kinetic Approach to Phenomenological Radiation Laws for HomogeneousSystems.- Nonlinear Optics.- 1. Phenomenological Survey of Nonlinear Optical Effects.- 2. Wave Propagation in Nonlinear Media.- 3. Boundary Conditions and Coupling Between Light Waves in a Dispersive Medium.- 4. Stimulated Brillouin, Raman and Rayleigh Scattering Effects.- 5. Quantum Mechanical Calculation of Nonlinear Susceptibilities. Lamb's Theory of Coupled Laser Modes.- Lectures on Homogeneous Turbulence.- Preface.- 1. Introduction.- 2. The Deillegalscription of Homogeneous Turbulence.- 3. Structure and Invariance of the Large Eddies.- 4. The Problem of Decay.- 5. The Universal Equilibrium Theory (Kolmogorov).- 6. "Burgerlence".- 7. The Structure of Turbulence.- 8. Quasianalytical Theories of Turbulence.- 9. Concluding Remarks.- Superspace and the Nature of Quantum Geometrodynamics.- Allowable History Selected out of Arena of Dynamics by Constructive Interference.- Three Dimensions, Not Four.- Superspace.- Wave Packet in Superspace and its Propagation.- "Spacetime" a Concept of Limited Validity.- The Planck Length and Gravitational Collapse.- Quantum Fluctuations in Geometry of Space.- Fluctuations Superposed on Classical Background.- Extrapolate Geometrodynamics to the Planck Scales of Distances?.- Electricity as Lines of Force Trapped in the Topology of Space.- The Energy of the Vacuum.- A Particle as a Geometrodynamical Exciton.- Problem 1. "Derivation" of "Einstein-Hamilton-Jacobi Equation".- Problem 2. Structure of Superspace.- Fixed Topology Excludes GMD Account of Particles and Fields.- Formalism of Field When Treated as "Foreign and Physical".- The Orientation Entanglement Relation or "Version".- Alternative Spin Structures in a Multiply Connected Space.- The Multisheeted Character of Superspace.- Electromagnetlsm as a Statistical Aspectof Geometry? Other Questions.- The Example of 2-Geometries.- Other Aspects of Superspace.- Tangent Vectors on Superspace and the Classical Initial Value Problem.- Problem 3. Initial Conditions.- References.


Klappentext

Nonlinear Problems in Physics.- Nonlinear Problems in Physics.- The Nonlinear Field Theories in Mechanics.- 1. Thermodynamics of Homogeneous Processes.- Temperature and Heat.- Homogeneous Processes.- The Thermodynamic State.- Thermodynamic Processes.- Histories.- Thermodynamic Constitutive Equations.- Example 1. The Classical Caloric Equations of State.- 2. Kinematics. Changes of Frame.- Geometry.- Primitive Elements of Thermomechanics.- Bodies, Configurations, Motions.- Mass Density.- Reference Configuration.- Deformation Gradient.- Change of Reference Configuration.- Current Configuration as Reference.- Stretch and Rotation.- Stretching and Spin.- Changes of Frame.- 3. Force and Work, Laws of Motion.- Physical Principles of Mechanics.- Forces and Moments in Continuum Mechanics.- Momentum and Moment of Momentum.- The Euler-Cauchy Stress Principle.- Energy and Heat Work.- Equations of Balance.- Differential Equations of Continuum Mechanics.- 4. Constitutive Equations. Simple Materials.- Nature of Constitutive Equations.- Equivalent Processes.- Constitutive Equations.- Axioms for Constitutive Equations.- Simple Materials.- Exercise 4.1 (Zaremba-Noll Theorem).- Reduction for Material Frame-Indifference.- Internal Constraints.- 5. The Isotropy Group.- Isotropy Group.- Orthogonal Part of the Isotropy Group.- Change of Reference Configuration.- 6. Solids, Isotropic Materials, Fluids, Fluid Crystals.- Main Properties of the Isotropy Group.- Isotropic Materials.- Solids.- Fluids.- Fluid Crystals.- 7. Motions with Constant Stretch History.- Definition.- Noll¿s Theorem.- Determination of the Deformation History from the First Three Rivlin-Ericksen Tensors.- Equivalence of Simple Materials with Rivlin-Ericksen Materials in Motions with Constant Stretch History.- Classification of Motions with Constant Stretch History.- 8. The Stress System in Viscometric Flows of Incompressible Fluids.- Recapitulation.- Functional Equations for the Response Function.- Illustration by Means of Shearing Flow.- Consequences of Invariance Under Reflections.- The Viscometric Functions. Normal-Stress Effects.- Position of the Classical Theory.- 9. Dynamical Conditions in Viscometric Flows.- Recapitulation.- Dynamic Compatibility.- Shearing Flow.- Channel Flow.- Helical Flows.- Flow Between Rotating Cylinders.- Flow in a Circular Pipe.- Other Viscometric Flows.- 10. Impossibility of Rectilinear Plow in Pipes.- Problem.- Explicit Constitutive Equation.- Dynamical Equation.- Compatibility.- 11. Elastic Materials.- Statics of Simple Materials.- Reduction for Frame-Indifference.- Elastic Fluids.- Natural States.- Isotropic Elastic Materials.- Unconstrained Bodies.- Incompressible Bodies.- Remarks.- 12. Non-Homogeneous Universal Solutions for Incompressible Elastic Bodies.- Universal Solutions.- List of the Universal Solutions.- Inflation or Eversion, Torsion, and Extension of a Cylinder.- Torsion and Tension of a Solid Cylinder.- Eversion.- Remarks on Method.- 13. Hyperelastic Materials.- The Piola-Kirchhoff Stress Tensor.- Definition of a Hyperelastic Material.- The Two Isotropy Groups.- Minimum of the Stored-Energy Function.- Need for an A Priori Inequality.- Coleman and Noll¿s Inequality.- 14. Work Theorems in Hyperelasticity.- Nonsense About Perpetual Motion.- Virtual Work of the Traction on the Boundary.- Homogeneous Processes in Homogeneous Bodies.- The First Work Theorem.- The Second Work Theorem.- The Third Work Theorem.- 15. Thermomechanics. Equipresence.- Fading Memory.- Thermodynamics and Continuum Mechanics Reviewed.- General Principles of the Thermomechanics of Continua.- Thermodynamic Process.- Constitutive Equations. Equipresence.- The Clausius-Duhem Inequality.- The Reduced Dissipation Inequality.- Simple Thermodynamic Materials.- 16. Thermodynamics of Simple Materials with Fading Memory.- Quasi-Elastic Response. Fading Memory.- Dissipation and Quasi-Elastic Response.- Applications.- A Final Remark on the Stored-Energy Function in Elasticity.- 17. Wave Motions. Compatibility.- The Nature of Wave Motions.- Hadamard¿s Lemma.- Singular Surfaces.- Singular Surfaces for a Motion.- Compatibility Conditions for Second-Order Singular Surfaces.- Equation of Balance at a Singular Surface.- Acceleration Waves in Elasticity.- Weak Singular Surfaces in General.- 18. Wave Propagation in Dissipative Materials.- The ¿Smoothing¿ Effect of Dissipation.- Waves and Quasi-Elastic Response.- Relation Between the Homo-thermal and Homentropic Acoustic Tensors.- Waves in Non-Conductors.- Waves in Definite Conductors.- Closure.- to Nonequilibrium Statistical Physics.- 1. Introduction.- References.- 2. Phenomenological Approach ¿ Thermodynamics of Irreversible Processes.- References.- 3. Statistical Mechanics ¿ General Method.- a) Introduction.- b) Liouville Equation.- c) Free Particles.- d) Potential Scattering.- e) General Theory.- f) General Evolution Equation.- g) Transformation Theory of the Kinetic Equation.- h) Correlations.- References.- 4. Boltzmann Situations.- a) Anharmonlc Solids.- b) Brownlan Motion.- References.- 5. Generalized Boltzmann Situations.- a) The Three-Body Problem.- b) Strongly Coupled Systems.- c) The RenormallzatIon Program.- Strongly Coupled Anharmonlc Oscillators.- d) Pl¿n Production in Baryon-Pion Scattering with a p-Meson in the Intermediate Stage.- e) Relation with S-Matrix Theory.- References.- 6. NonBoltzmann Situations.- a) General Remarks.- b) Harmonic Lattices.- c) Heisenberg Spin Systems.- d) Gravitational Plasmas.- References.- 7. Irreversibility.- a) Introduction.- b) Discussion of Zermelo¿s Paradox.- c) Discussion of Loschmidt¿s Paradox.- d) Meaning of Irreversibility.- References.- 8. Entropy.- a) Thermodynamic Entropy and Statistical Mechanics.- b) Entropy in Strongly Coupled Anharmonic Oscillators -Disorder and Entropy.- c) Canonical Entropy and Resonance Effects.- d) Numerical Calculations.- References.- 9. Concluding Remarks.- References.- Appendix I. The General Evolution Equation and Projection Operators.- References.- Appendix II. Nonanalytic Density Behavior of Transport Coefficients.- References.- Interactions in a Classical Relativistic Plasma.- Preface.- 1. Introduction.- 2. Lorentz-Invariant Statistical Mechanical Formalism for a Classical Relativistlc Plasma Interacting with an Electromagnetic Field.- a) Introduction.- b) Lorentz-Invariant Formalism.- c) Perturbation Treatment of the Liouville Equation.- 3. Formal Approach to the Phenomenological Electrodynamics of Plasmas.- 4. Kinetic Approach to the Electrodynamics of Homogeneous Systems.- a) Kinetic Equations.- b) General Deillegalscription of a Plasma Within the Ring Approximation.- b.1 Self-energy.- b.2 Relativistic Landau Equation.- b.3 General Ring Equations.- b.4 Ring Equations for Stable Systems.- b.5 Ring Equations for Unstable Systems.- c) Typical Radiation Processes.- c.1 Thomson Scattering.- c.2 Normal and Anomalous BremsStrahlung.- 5. Kinetic Approach to Phenomenological Radiation Laws for Homogeneous Systems.- a) General Radiation Transfer Equation.- b) Relation Between Absorption Coefficient and Electrical Conductivity.- References.- Nonlinear Optics.- 1. Phenomenological Survey of Nonlinear Optical Effects.- 1.1 The Anharmonic Oscillator as a Classical Model of Nonlinearity.- 1.2 Nonlinear Source Terms.- 1.3 Nonlinearities in Media with Inversion Symmetry and in Isotropic Media.- 2. Wave Propagation in Nonlinear Media.- 2.1 The Nonlinear Wave Equation.- 2.2 Bogoliubov¿s Method for a One-dimensional Nonlinear Mechanical System.- 2.3 The Secular and Nonsecular Behavior of the Wave Equation.- 3. Boundary Conditions and Coupling Between Light Waves in a Dispersive Medium.- 3.1 Parametric Generation.- 3.2 Secular Harmonic Conversion.- 3.3 The Propagation of a Wave in a Medium with a Complex Intensity Dependent Index of Refraction.- 3.4 Saturable Absorber.- 3.5 Second Harmonic Generation in Dissipative Crystals Without Inversion Symmetry.- 4. Stimulated Brillouin, Raman and Rayleigh Scattering Effects.- 4.1 Self-Focusing of the Laser Beam.- 4.2 Parametric Down Conversion.- 4.3 The Stimulated Raman Scattering as a Parametric Process.- 5. Quantum Mechanical Calculation of Nonlinear Susceptibilities. Lamb¿s Theory of Coupled Laser Modes.- 5.1 The Coupling of One Electromagnetic Mode with Independent Particles with Two Energy Levels.- 5.2 Quantum Mechanical Calculation of Nonlinear Susceptibilities.- 5.3 Oscillation in a Single Mode.- 5.4 Two Oscillating Modes.- 5.5 Three Coupled Modes in a Gas Laser.- Lectures on Homogeneous Turbulence.- Preface.- 1. Introduction.- Diffusive Property of Turbulence.- Strong Nonlinearity.- Intermittency.- Homogeneous Turbulence.- Appendix 1..- 2. The Deillegalscription of Homogeneous Turbulence.- Correlation Tensors.- Spectral Tensors.- The Probability Distribution.- Formulation of the Problem of Homogeneous Turbulence.- Isotropic Turbulence.- Do All Mean Values Exist?.- 3. Structure and Invariance of the Large Eddies.- Fourier Analysis of the Velocity Field.- Form of the Energy Spectrum Tensor for Small Wavenumber.- The Form of the Velocity Correlation Tensor at Large Separation.- The Case C=0.- Stationary Homogeneous Turbulence.- 4. The Problem of Decay.- The Generation of Vorticity.- 5. The Universal Equilibrium Theory (Kolmogorov).- Deductions.- Inertial Subrange.- Experimental Evidence.- Alternative Explanation of the Dependence on ? and v and the k-5/3 Dependence.- 6. ¿Burgerlence¿.- Decay of a Single Pulse.- Decay of a Periodic Train of Pulses.- Decay of a General Disturbance.- The Spectrum Function.- Simple Derivation of the Qualitative Dependence.- The Kolmogorov Length in Burgerlence.- 7. The Structure of Turbulence.- Two Exact Solutions of the Navier-Stokes Equations.- Random Collections of Sheets and Tubes.- A Model of Turbulent Motion.- Predictions of the Model.- Remarks.- 8. Quasianalytical Theories of Turbulence.- Theories Based on Physical Approximations.- The Joint Normal Approximation or Zero Fourth-Order Cumulant Hypothesis.- The Wiener-Hermite Expansion.- The Kraichnan Direct Interaction Approximation.- 9. Concluding Remarks.- References.- Superspace and the Nature of Quantum Geometrodynamics.- Allowable History Selected out of Arena of Dynamics by Constructive Interference.- Three Dimensions, Not Four.- Superspace.- Wave Packet in Superspace and its Propagation.- ¿Spacetime¿ a Concept of Limited Validity.- The Planck Length and Gravitational Collapse.- Quantum Fluctuations in Geometry of Space.- Fluctuations Superposed on Classical Background.- Extrapolate Geometrodynamics to the Planck Scales of Distances?.- Electricity as Lines of Force Trapped in the Topology of Space.- The Energy of the Vacuum.- A Particle as a Geometrodynamical Exciton.- Problem 1. ¿Derivation¿ of ¿Einstein-Hamilton-Jacobi Equation¿.- Subillegalscript on Relation of Hamilton-Jacobi Method to Conventional Analytic Solutions of Field Equations.- Problem 2. Structure of Superspace.- Level 1. Classical Geometrodynamics; Topology Does Not Change.- Fixed Topology Excludes GMD Account of Particles and Fields.- Formalism of Field When Treated as ¿Foreign and Physical¿.- Level 2. Space Resonating Between 3-Geometries of Varied Topology.- The Orientation Entanglement Relation or ¿Version¿.- Alternative Spin Structures in a Multiply Connected Space.- The Multisheeted Character of Superspace.- Electromagnetlsm as a Statistical Aspect of Geometry? Other Questions.- The Example of 2-Geometries.- Other Aspects of Superspace.- Tangent Vectors on Superspace and the Classical Initial Value Problem.- Level 3. Pregeometry.- Problem 3. Initial Conditions.- References.




Springer Book Archives



Datenschutz-Einstellungen