reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zuDiesen Artikel senden wir Ihnen ohne weiteren Aufpreis als PAKET

Molecular Evolution: Evidence for Monophyly of Metazoa
(Englisch)
Progress in Molecular and Subcellular Biology 19
Müller, Werner E. G.

Print on Demand - Dieser Artikel wird für Sie gedruckt!

86,45 €

inkl. MwSt. · Portofrei
Dieses Produkt wird für Sie gedruckt, Lieferzeit ca. 14 Werktage
Menge:

Molecular Evolution: Evidence for Monophyly of Metazoa

Seiten
Erscheinungsdatum
Ausstattung
Erscheinungsjahr
Sprache
Abbildungen
Serienfolge
Vertrieb
Kategorie
Buchtyp
Warengruppenindex
Warengruppe
Features
Laenge
Breite
Hoehe
Gewicht
Herkunft
Relevanz
Referenznummer
Moluna-Artikelnummer

Produktbeschreibung

The first book to address this topic
Of interest to all evolutionary biologists
This volume concentrates on the origin of multicellular animals, Metazoa. Until now, no unequivocal phylogeny has been produced. Therefore, the questions remain: Did Metazoa evolve from the Protozoa only once, or several times? Is the origin of animals monophyletic or polyphyletic? Especially the relationships between the existing lower metazoan phyla, particularly the Porifera (sponges) are uncertain. Based on sequence data of genes typical for multicellularity it is demonstrated that all Metazoa, including Porifera, should be placed into the kingdom Animalia together with the Eumetazoa. Therefore it is most likely that all animals are of monophyletic origin.
Transition from Protozoa to Metazoa: An Experimental Approach.- 1 Introduction.- 2 Proteins Present in All Biotic Regna.- 2.1 Reproduction.- 2.2 Growth and Development.- 2.3 Energy Utilization.- 2.4 Response to the Environment.- 2.5 Homeostasis.- 2.6 Evolutionary Adaptation.- 3 Monophyly of Metazoa.- 4 Origin of Metazoan Genes and Proteins.- 4.1 Introns.- 4.2 Protein Modules.- 5 Evolution of Metazoan Genes.- 5.1 Sponge: Receptor Tyrosine Kinase.- 5.2 Tunicate: Immunolectin — Antigen Receptor.- 5.2.1 Immunolectin.- 5.2.2 Antigen Receptor.- 5.3 Protein Kinases.- 5.3.1 Ser/Thr Kinases.- 5.3.2 Tyr Kinases.- 5.3.3 Relationship Between Ser/Thr and Tyr Kinases.- 6 Directed Evolution?.- References.- Individuality in Early Eukaryotes and the Consequences for Matazoan Development.- 1 Introduction.- 2 The Evolution of Metabolism and Development.- 2.1 Metabolism and Development, Revisited.- 2.1.1 Mitochondria Make Waves.- 2.1.2 Oxygen Radicals and Cell Signaling.- 2.1.3 Oxygen Radicals and Cell Signaling, Continued.- 2.1.4 Metabolism and Development in the Basal Metazoa.- 2.1.5 Summary.- 2.2 The Logic of the Metabolic Control of Development.- 2.2.1 Simple to Complex Cells.- 2.2.2 Single Cells to Multicellular Organisms.- 2.2.3 Summary: The Logic of Metabolic Control.- 2.3 Summary.- 3 Conclusions.- 3.1 Metazoan Phylogeny and the Mechanisms of Development.- 3.2 Toward a Predictive Theory of Evolution.- References.- Evolution of Animal Lectins.- 1 Introduction.- 2 Brief Overview of Lectins.- 3 Evolution of the C-Type Lectin Family.- 3.1 Overview of the Members of the C-Type Lectin Family.- 3.1.1 Receptor Proteins.- 3.1.2 Soluble Proteins.- 3.2 Biochemical Properties of C-Type Lectin.- 3.2.1 General Properties.- 3.2.2 Binding Specificity.- 3.2.3 Structure of the Sugar-Binding Site.- 3.3 Molecular Evolution of C-Type Lectins.- 4 Evolution of Galectins.- 4.1 Galectin: A New Family Name for a Group of Animal Lectins.- 4.1.1 The Early Period of Galectin Research.- 4.1.2 Expansion of the Galectin Family.- 4.2 Biochemical Properties of the Galectin Family.- 4.2.1 General Properties.- 4.2.2 Three Types of Galectins.- 4.3 Gene Structures of Galectins.- 4.4 Molecular Evolution of Galectins.- 4.4.1 Sequence Similarity Between Galectins.- 4.4.2 Divergence of Galectins.- 4.5 Galectins: Relatives of Legume Lectins?.- 5 Comparison of the Galectin Family and the C-Type Lectin Family.- 5.1 Family Size.- 5.2 Molecular Architecture.- 5.3 Binding Specificity.- 5.4 Localization.- 5.5 Different Missions Assigned to Galectins and C-Type Lectins.- 6 Evolution of Glycocodes.- 6.1 Galactose: A Special Position in Sugar Recognition.- 6.2 Selection of Elementary Sugars in the Life System.- 6.3 Monosaccharides: Biosynthesis from Glucose and Mannose.- 6.4 A Possible Scenario of the Origin of Carbohydrates.- References.- Molecular Phylogeny of Eumetazoa: Genes in Sponges (Porifera) Give Evidence for Monophyly of Animals.- 1 Introduction.- 2 Earlier Problems.- 3 Porifera (Sponges).- 3.1 Tissue.- 3.2 Cell Number.- 3.3 Genome Size.- 3.4 Phylogenetic Position.- 4 Rationale for a Classification of Sponges as Metazoa.- 4.1 Molecules Controlling Tissue Formation.- 4.2 Signal Transduction Molecules.- 4.2.1 Type I Receptors.- 4.2.2 Type II Receptors.- 4.2.3 Type III Receptors.- 4.3 Tranillegalscription Factors.- 4.4 Migration.- 4.5 Molecules of Sensory Organs?.- 4.6 Response to the Environment.- 4.7 Morphogens.- 4.8 Molecules Potentially Involved in Sponge Immunity.- 5 Genes in Sponges: Coding for Metazoan Proteins.- 5.1 Model Animal.- 5.2 Gene Structure.- 5.2.1 Lack of Introns.- 5.2.2 Intron Polymorphism.- 5.3 Genes/cDNAs Controlling Tissue Formation.- 5.3.1 Collagen.- 5.3.2 Integrin Receptor.- 5.3.3 "C-Type” Lectins — Galectins.- 5.3.4 Biological Role of Sponge Galectins.- 5.4 Signal Transduction Molecules.- 5.4.1 Receptor Tyrosine Kinase.- 5.4.2 Serine/Threonine Kinases.- 5.5 Tranillegalscription Factors.- 5.5.1 Homeodomain Proteins.- 5.5.2 Serum Response Factor.- 5.6 Migration.- 5.7 Molecules of Sensory Organs?.- 5.8 Response to the Environment.- 5.8.1 Heat-Shock Protein 70.- 5.8.2 Ubiquitin.- 5.8.3 DnaJ.- 5.8.4 GDP Dissociation Inhibitor.- 5.9 Molecules Potentially Involved in Sponge Immunity.- 5.9.1 Polymorphism in the Ig-Like Domains of the Receptor Tyrosine Kinase.- 5.9.2 Proteins and Genes in G. cydonium Related to the Human MHC.- 5.9.3 Proteins Featuring Scavenger Receptor Cysteine-Rich Domains.- 5.9.4 Molecules Comprising Short Consensus Repeats.- 6 Evolutionary Tempo.- 7 Conclusion.- References.- Homeobox Genes in the Freshwater Sponge Ephydatia fluviatilis.- 1 Introduction.- 2 Classification of Homeobox Genes.- 2.1 Characteristics of Homeodomains.- 2.2 Classification of Homeobox Genes in Drosophila.- 3 Homeobox Genes in Freshwater Sponges.- 3.1 Methods for the Identification of Hemeobox Genes in Low Metazoans.- 3.2 Homeobox Genes Isolated from Sponges.- 3.2.1 prox1, prox2, and prox3.- 3.2.2 spou-1 and spou-2.- 3.2.3 Other Homeobox Genes.- 4 Comparison of the Homeobox Genes of Sponges with Those of Other Animals.- 4.1 Comparison of the Amino Acid Sequences of the Homeodomains Encoded by prox1, prox2, and prox3 of Sponges with Those of Other Animals.- 4.2 Comparison of Amino Acid Sequences of POU-Specific Domains and POU-Type Homeodomains Encoded by spou-1 and spou-2 of Sponge with Those of Other Animals.- 5 Principles Associated with the Conservation and Diversification of Homeobox Genes During Animal Evolution.- 6 Conclusion.- References.- Homeobox-Containing Genes in Freshwater Sponges: Characterization, Expression and Phylogeny.- 1 Introduction.- 2 Materials and Methods.- 2.1 Purification and Labelling of DNA Fragments.- 2.2 Screening of a Sponge Genomic Library.- 2.3 Random Sequencing of the 12 kb-Cloned Sponge DNA.- 2.4 Sequence Analysis.- 2.5 Sponge Culture.- 2.6 RNA Extraction.- 2.7 RT-PCR Experiments.- 3 Results and Discussion.- 3.1 Cloning and Sequencing of the EmH-3 Homeobox-Containing Gene.- 3.2 EmH-3 Gene Organization.- 3.3 Analysis of the EmH-3 Homeobox Protein.- 3.4 Expression of the EmH-3 Gene in the Course of Development.- 3.5 Phylogeny of Sponge Homeobox-Containing Genes.- 4 Conclusions.- References.- Early Evolution of the Metazoa: An Inference from the Elongation Factor-1?.- 1 Introduction.- 2 Inference from EF-1? Sequences.- 3 Monophyly of the Metazoa.- 4 Phylogenetic Status of the Diploblasts.- 5 Conclusion.- References.
This volume focuses on the origin of multicellular animals, Metazoa. Fossil records are scarce and morphological, biochemical or cytological evidence has not demonstrated an unequivocal phylogeny. Therefore, the question remains: Did Metazoa evolve from Protozoa only once, or several times? Is the origin of animals monophyletic or polyphyletic? Especially the relationships between the existing lower metazoan phyla, particularly the Porifera, are uncertain. In addition, phylogenetic analyses of nucleotide sequences of small and large ribosomal RNA also revealed no conclusive results with regard to the evolu tionary dichotomy of diploblasts (Porifera, Cnidaria and Ctenophora) and triploblasts in general and the diploblastic lineages in particular. During the evolution of unicellular eukaryotes to multicellular animals, complex molecular systems were established which allow a tuned and control led interaction between cells among each other, and cells and extracellular molecules. Hence, cell surface-associated adhesion and growth hormone receptors, as well as their corresponding extracellular ligands, have evolved. In addition, tranillegalscription factors had to be introduced that control gene func tions in the variety of cell types in developing and adult organisms.
Transition from Protozoa to Metazoa: An Experimental Approach.- 1 Introduction.- 2 Proteins Present in All Biotic Regna.- 3 Monophyly of Metazoa.- 4 Origin of Metazoan Genes and Proteins.- 5 Evolution of Metazoan Genes.- 6 Directed Evolution?.- References.- Individuality in Early Eukaryotes and the Consequences for Matazoan Development.- 1 Introduction.- 2 The Evolution of Metabolism and Development.- 3 Conclusions.- References.- Evolution of Animal Lectins.- 1 Introduction.- 2 Brief Overview of Lectins.- 3 Evolution of the C-Type Lectin Family.- 4 Evolution of Galectins.- 5 Comparison of the Galectin Family and the C-Type Lectin Family.- 6 Evolution of Glycocodes.- References.- Molecular Phylogeny of Eumetazoa: Genes in Sponges (Porifera) Give Evidence for Monophyly of Animals.- 1 Introduction.- 2 Earlier Problems.- 3 Porifera (Sponges).- 4 Rationale for a Classification of Sponges as Metazoa.- 5 Genes in Sponges: Coding for Metazoan Proteins.- 6 Evolutionary Tempo.- 7 Conclusion.- References.- Homeobox Genes in the Freshwater Sponge Ephydatia fluviatilis.- 1 Introduction.- 2 Classification of Homeobox Genes.- 3 Homeobox Genes in Freshwater Sponges.- 4 Comparison of the Homeobox Genes of Sponges with Those of Other Animals.- 5 Principles Associated with the Conservation and Diversification of Homeobox Genes During Animal Evolution.- 6 Conclusion.- References.- Homeobox-Containing Genes in Freshwater Sponges: Characterization, Expression and Phylogeny.- 1 Introduction.- 2 Materials and Methods.- 3 Results and Discussion.- 4 Conclusions.- References.- Early Evolution of the Metazoa: An Inference from the Elongation Factor-1?.- 1 Introduction.- 2 Inference from EF-1? Sequences.- 3 Monophyly of the Metazoa.- 4 Phylogenetic Status of the Diploblasts.- 5 Conclusion.-References.

Inhaltsverzeichnis



Transition from Protozoa to Metazoa: An Experimental Approach.- 1 Introduction.- 2 Proteins Present in All Biotic Regna.- 2.1 Reproduction.- 2.2 Growth and Development.- 2.3 Energy Utilization.- 2.4 Response to the Environment.- 2.5 Homeostasis.- 2.6 Evolutionary Adaptation.- 3 Monophyly of Metazoa.- 4 Origin of Metazoan Genes and Proteins.- 4.1 Introns.- 4.2 Protein Modules.- 5 Evolution of Metazoan Genes.- 5.1 Sponge: Receptor Tyrosine Kinase.- 5.2 Tunicate: Immunolectin ¿ Antigen Receptor.- 5.2.1 Immunolectin.- 5.2.2 Antigen Receptor.- 5.3 Protein Kinases.- 5.3.1 Ser/Thr Kinases.- 5.3.2 Tyr Kinases.- 5.3.3 Relationship Between Ser/Thr and Tyr Kinases.- 6 Directed Evolution?.- References.- Individuality in Early Eukaryotes and the Consequences for Matazoan Development.- 1 Introduction.- 2 The Evolution of Metabolism and Development.- 2.1 Metabolism and Development, Revisited.- 2.1.1 Mitochondria Make Waves.- 2.1.2 Oxygen Radicals and Cell Signaling.- 2.1.3 Oxygen Radicals and Cell Signaling, Continued.- 2.1.4 Metabolism and Development in the Basal Metazoa.- 2.1.5 Summary.- 2.2 The Logic of the Metabolic Control of Development.- 2.2.1 Simple to Complex Cells.- 2.2.2 Single Cells to Multicellular Organisms.- 2.2.3 Summary: The Logic of Metabolic Control.- 2.3 Summary.- 3 Conclusions.- 3.1 Metazoan Phylogeny and the Mechanisms of Development.- 3.2 Toward a Predictive Theory of Evolution.- References.- Evolution of Animal Lectins.- 1 Introduction.- 2 Brief Overview of Lectins.- 3 Evolution of the C-Type Lectin Family.- 3.1 Overview of the Members of the C-Type Lectin Family.- 3.1.1 Receptor Proteins.- 3.1.2 Soluble Proteins.- 3.2 Biochemical Properties of C-Type Lectin.- 3.2.1 General Properties.- 3.2.2 Binding Specificity.- 3.2.3 Structure of the Sugar-Binding Site.- 3.3 Molecular Evolution of C-Type Lectins.- 4 Evolution of Galectins.- 4.1 Galectin: A New Family Name for a Group of Animal Lectins.- 4.1.1 The Early Period of Galectin Research.- 4.1.2 Expansion of the Galectin Family.- 4.2 Biochemical Properties of the Galectin Family.- 4.2.1 General Properties.- 4.2.2 Three Types of Galectins.- 4.3 Gene Structures of Galectins.- 4.4 Molecular Evolution of Galectins.- 4.4.1 Sequence Similarity Between Galectins.- 4.4.2 Divergence of Galectins.- 4.5 Galectins: Relatives of Legume Lectins?.- 5 Comparison of the Galectin Family and the C-Type Lectin Family.- 5.1 Family Size.- 5.2 Molecular Architecture.- 5.3 Binding Specificity.- 5.4 Localization.- 5.5 Different Missions Assigned to Galectins and C-Type Lectins.- 6 Evolution of Glycocodes.- 6.1 Galactose: A Special Position in Sugar Recognition.- 6.2 Selection of Elementary Sugars in the Life System.- 6.3 Monosaccharides: Biosynthesis from Glucose and Mannose.- 6.4 A Possible Scenario of the Origin of Carbohydrates.- References.- Molecular Phylogeny of Eumetazoa: Genes in Sponges (Porifera) Give Evidence for Monophyly of Animals.- 1 Introduction.- 2 Earlier Problems.- 3 Porifera (Sponges).- 3.1 Tissue.- 3.2 Cell Number.- 3.3 Genome Size.- 3.4 Phylogenetic Position.- 4 Rationale for a Classification of Sponges as Metazoa.- 4.1 Molecules Controlling Tissue Formation.- 4.2 Signal Transduction Molecules.- 4.2.1 Type I Receptors.- 4.2.2 Type II Receptors.- 4.2.3 Type III Receptors.- 4.3 Tranillegalscription Factors.- 4.4 Migration.- 4.5 Molecules of Sensory Organs?.- 4.6 Response to the Environment.- 4.7 Morphogens.- 4.8 Molecules Potentially Involved in Sponge Immunity.- 5 Genes in Sponges: Coding for Metazoan Proteins.- 5.1 Model Animal.- 5.2 Gene Structure.- 5.2.1 Lack of Introns.- 5.2.2 Intron Polymorphism.- 5.3 Genes/cDNAs Controlling Tissue Formation.- 5.3.1 Collagen.- 5.3.2 Integrin Receptor.- 5.3.3 ¿C-Type¿ Lectins ¿ Galectins.- 5.3.4 Biological Role of Sponge Galectins.- 5.4 Signal Transduction Molecules.- 5.4.1 Receptor Tyrosine Kinase.- 5.4.2 Serine/Threonine Kinases.- 5.5 Tranillegalscription Factors.- 5.5.1 Homeodomain Proteins.- 5.5.2 Serum Response Factor.- 5.6 Migration.- 5.7 Molecules of Sensory Organs?.- 5.8 Response to the Environment.- 5.8.1 Heat-Shock Protein 70.- 5.8.2 Ubiquitin.- 5.8.3 DnaJ.- 5.8.4 GDP Dissociation Inhibitor.- 5.9 Molecules Potentially Involved in Sponge Immunity.- 5.9.1 Polymorphism in the Ig-Like Domains of the Receptor Tyrosine Kinase.- 5.9.2 Proteins and Genes in G. cydonium Related to the Human MHC.- 5.9.3 Proteins Featuring Scavenger Receptor Cysteine-Rich Domains.- 5.9.4 Molecules Comprising Short Consensus Repeats.- 6 Evolutionary Tempo.- 7 Conclusion.- References.- Homeobox Genes in the Freshwater Sponge Ephydatia fluviatilis.- 1 Introduction.- 2 Classification of Homeobox Genes.- 2.1 Characteristics of Homeodomains.- 2.2 Classification of Homeobox Genes in Drosophila.- 3 Homeobox Genes in Freshwater Sponges.- 3.1 Methods for the Identification of Hemeobox Genes in Low Metazoans.- 3.2 Homeobox Genes Isolated from Sponges.- 3.2.1 prox1, prox2, and prox3.- 3.2.2 spou-1 and spou-2.- 3.2.3 Other Homeobox Genes.- 4 Comparison of the Homeobox Genes of Sponges with Those of Other Animals.- 4.1 Comparison of the Amino Acid Sequences of the Homeodomains Encoded by prox1, prox2, and prox3 of Sponges with Those of Other Animals.- 4.2 Comparison of Amino Acid Sequences of POU-Specific Domains and POU-Type Homeodomains Encoded by spou-1 and spou-2 of Sponge with Those of Other Animals.- 5 Principles Associated with the Conservation and Diversification of Homeobox Genes During Animal Evolution.- 6 Conclusion.- References.- Homeobox-Containing Genes in Freshwater Sponges: Characterization, Expression and Phylogeny.- 1 Introduction.- 2 Materials and Methods.- 2.1 Purification and Labelling of DNA Fragments.- 2.2 Screening of a Sponge Genomic Library.- 2.3 Random Sequencing of the 12 kb-Cloned Sponge DNA.- 2.4 Sequence Analysis.- 2.5 Sponge Culture.- 2.6 RNA Extraction.- 2.7 RT-PCR Experiments.- 3 Results and Discussion.- 3.1 Cloning and Sequencing of the EmH-3 Homeobox-Containing Gene.- 3.2 EmH-3 Gene Organization.- 3.3 Analysis of the EmH-3 Homeobox Protein.- 3.4 Expression of the EmH-3 Gene in the Course of Development.- 3.5 Phylogeny of Sponge Homeobox-Containing Genes.- 4 Conclusions.- References.- Early Evolution of the Metazoa: An Inference from the Elongation Factor-1?.- 1 Introduction.- 2 Inference from EF-1? Sequences.- 3 Monophyly of the Metazoa.- 4 Phylogenetic Status of the Diploblasts.- 5 Conclusion.- References.


Klappentext



This volume concentrates on the origin of multicellular animals, Metazoa. Until now, no unequivocal phylogeny has been produced. Therefore, the questions remain: Did Metazoa evolve from the Protozoa only once, or several times? Is the origin of animals monophyletic or polyphyletic? Especially the relationships between the existing lower metazoan phyla, particularly the Porifera (sponges) are uncertain. Based on sequence data of genes typical for multicellularity it is demonstrated that all Metazoa, including Porifera, should be placed into the kingdom Animalia together with the Eumetazoa. Therefore it is most likely that all animals are of monophyletic origin.




The first book to address this topic

Of interest to all evolutionary biologists



Datenschutz-Einstellungen