reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zuDiesen Artikel senden wir Ihnen ohne weiteren Aufpreis als PAKET

Immunobiology of Parasites and Parasitic Infections
(Englisch)
Contemporary topics in immunobiology 12
Marchalonis, John

Print on Demand - Dieser Artikel wird für Sie gedruckt!

86,45 €

inkl. MwSt. · Portofrei
Dieses Produkt wird für Sie gedruckt, Lieferzeit ca. 14 Werktage
Menge:

Immunobiology of Parasites and Parasitic Infections

Seiten
Erscheinungsdatum
Ausstattung
Erscheinungsjahr
Sprache
Serienfolge
Hersteller
Vertrieb
Kategorie
Buchtyp
Warengruppenindex
Laenge
Breite
Hoehe
Gewicht
Herkunft
Relevanz
Referenznummer
Moluna-Artikelnummer

Produktbeschreibung

The phenomena involved in infections of man and domestic animals with metazoan or protozoan parasites present formidable practical problems as well as a theoretical challenge to immunologists, molecular biologists, and evolu­ tionary biologists. With respect to the public health and economic problems, malaria, for example, remains a major health problem with approximately 200 million people being infected yearly and, on the basis of World Health Organiza­ tion estimates, more than 1 million children die each year of malaria infections (Chapter 4). This volume addresses state-of-the-art immunologic approaches to the development of vaccines for parasitic diseases (Chapter 9) and analyses of studies bearing on the antigenic characterization of protozoan and metazoan parasites (Chapters 4, 5, and 7), on investigations of the role of precise mecha­ nisms underlying natural resistance or non permissiveness of the host to parasitic infections (Chapters 1, 2, and 12), on induced mechanisms including the genera­ tion of parasite-specific T-cell lines and clones (Chapter 6), and on the generation of monoclonal antibodies (Chapters 4 and 5) to parasite antigens of distinct de­ velopmental stages. Great progress has been made in characterizing parasite antigens capable of inducing a protective response in the vaccinated host; further progress in this area strongly depends on biochemistry and molecular biology with the long-term goal of synthesizing such antigens chemically or producing them by means of recombinant DNA technology (Chapter 4).
1 Natural Resistance to Animal Parasites.- I. Introduction.- II. Natural Resistance in Vertebrate Hosts.- A. Strains of Inbred Mice.- B. Biozzi Strains of Mice.- C. Variations in Resistance Related to Sex and Age.- III. Mechanisms of Natural Resistance.- A. Humoral Substances.- B. Immunologically Deficient Mice.- C. Macrophages.- D. Naturally Cytotoxic Cells.- E. Resistance in Nonpermissive Prospective Hosts.- IV. Conclusions.- V. References.- 2 Intracellular Mechanisms of Killing.- I. Introduction.- II. Parasite Interiorization by Mononuclear Phagocytes.- A. Subcellular Localization.- B. Biochemical Events.- III. Trypanosoma cruzi: Macrophage Activation and Intracellular Killing.- A. Correlation with H2O2 Generation in a Murine System.- B. Correlation with H2O2 Generation in Human Mononuclear Phagocytes.- C. Triggering of H2O2 Release by Macrophages Phagocytizing T. cruzi.- IV. Toxoplasma gondii: Macrophage Activation and Intracellular Killing.- A. Correlation with the Generation of Reactive Oxygen Intermediates in a Murine System.- B. Failure to Trigger the Respiratory Burst.- V. Leishmania spp.: Macrophage Activation and Intracellular Killing.- A. Leishmania enrietti.- B. Leishmania tropica.- C. Leishmania donovani.- VI. Conclusions.- VII. References.- 3 Induction and Expression of Mucosal Immune Responses and Inflammation to Parasitic Infections.- I. Introduction.- II. The Interface: Host Cells Meet Parasite Antigens.- A. Antigens and Epithelial Cells.- B. Induction Events in Mucosal Lymphoid Aggregates.- C. Comment.- III. Immune Responses and Mucosal Inflammation in Parasitic Infections.- A. Epithelium.- B. Lamina Propria.- C. Intestinal Lumen.- IV. Mucosal Effectors of Host Resistance.- A. Parasite Elimination.- B. Host Pathology.- V. Conclusions.- VI. References.- 4 Antigenic Characterization of Plasmodia.- I. Introduction.- II. Plasmodial Life Cycle.- III. Sporozoites.- IV. Exoerythrocytic Stages.- V. Asexual Erythrocytic Stages.- A. Antigenic Characterization of the Various Asexual Erythrocytic Stages.- B. Identification of Plasmodial Antigens Relevant to Protection Using Polyclonal and Monoclonal Antibodies.- C. Circulating P. falciparum Antigens and Polypeptides Released in Culture Medium.- VI. Gametes.- VII. Conclusions and Prospects.- VIII. References.- 5 Roles of Surface Antigens on Malaria-Infected Red Blood Cells in Evasion of Immunity.- I. Introduction.- II. Immunity to Asexual Malaria Parasites.- A. Natural Infections in Humans.- B. Experimentally Induced Infections in Human Subjects and Animals.- C. Active Immunization.- D. Nature of Immune Responses.- III. Antigens on Malaria-Infected Erythrocytes—Targets of Parasiticidal Immunity?.- A. New Antigens Expressed on Malaria-Infected Erythrocytes.- B. Parasiticidal Mechanisms—Activated in Vivo by Antibody Binding to Infected Cells?.- IV. Nature of New Antigens on Infected Cells.- A. New Antigens Associated with Morphologic Alterations of the Membrane.- B. New Antigens Associated with Antigenic Variation: SICA Antigens.- C. Other New Antigens on Infected Cells.- V. Parasitic Evasion of Immunity—General Concepts.- VI. SICA Antigen-Immune Evasion.- A. Immune Evasion by Antigenic Variation.- B. Comparison of SICA [+] and SICA [?] Parasites: Evidence for Immunosuppression.- VII. Knobs and Immune Evasion by Sequestration.- A. Sequestration in Vivo.- B. Binding to Endothelial Cells and Melanoma Cells in Vitro.- C. Sequestration and Parasite Survival.- D. Role of Antibody to Knob Components in Immunity.- E. Summary of Knob Function.- VIII. Concluding Remarks.- IX. References.- 6 Murine T-Cell Responses to Protozoan and Metazoan Parasites: Functional Analysis of T-Cell Lines and Clones Specific for Leishmania tropica and Schistosoma mansoni.- I. Leishmania tropica Major.- A. Deillegalscription of Methods Used for the Functional Analysis of Specific T-Cell Responses in Mice Primed with L. tropica Antigens.- B. Influence of Infection with L. tropica on the Development of Specific T-Cell Responses in Mice.- C. Leishmania-Specific T-Cell Lines.- D. Leishmania-Specific T-Cell Clones.- E. Concluding Remarks.- II. Schistosoma mansoni.- A. Murine T-Lymphocyte-Dependent Proliferative Responses to Schistosoma Antigens: Characteristics and Specificity.- B. Helper Activity of LN Cells from Mice Primed with Schistosoma Antigens.- C. Schistosome-Specific T-Cell Lines.- D. Cloned T Cells Specific for Schistosoma Antigens.- E. Concluding Remarks.- III. References.- 7 Immunobiology of African Trypanosomiasis.- I. Introduction.- II. Trypanosome Antigens.- A. Variant-Surface Glycoprotein.- B. Internal Antigenic Determinants.- III. Protective Immune Response.- A. Antibody.- B. Cell-Mediated Immunity.- IV. Deleterious Effects of the Immune Response.- V. Effects of Trypanosome Infection on the Lymphoid System.- A. Hypergammaglobulinemia and Polyclonal Activation.- B. Immunodepression.- VI. Susceptibility to Trypanosomiasis.- A. Nonpermissive Hosts.- B. Variations of Susceptibility in Permissive Hosts.- VII. Conclusions.- VIII. References.- 8 Rodent Models of Filariasis.- I. Introduction.- II. Responses of the Host to Developing Larvae and Adult Worms.- A. Studies in Susceptible Hosts Infected with Filariae Naturally Parasitic in Rodents.- B. Studies in Rodents Susceptible to Infections with Nonrodent Filariae, Including Parasites of Humans.- C. Experimental Filariasis in Resistant Rodents.- III. Responses of the Host to Microfilariae.- A. Models of Latent Filariasis.- B. Responses to Microfilariae in Rodents Resistant to Normal Infections.- IV. Conclusions.- V. References.- 9 Examination of Strategies for Vaccination against Parasitic Infection or Disease Using Mouse Models.- I. Introduction.- II. Taenia taeniaeformis (Murine Cysticercosis): Immunoprophylaxis and Immunotherapy.- III. Leishmania tropica (Murine Cutaneous Leishmaniasis): Vaccination against Parasite Establishment or Chronic Disease.- IV. Schistosoma japonicum (Murine Schistosomiasis Japonica): Vaccination against Immunopathologic Disease.- V. Giardia muris (Murine Giardiasis): Vaccination for Accelerated Rejection of Intestinal Parasites.- VI. Nematospiroides dubius (Murine Nematodiasis): Vaccination for Accelerated Rejection of Intestinal Parasites.- VII. Fasciola hepatica (Murine Fascioliasis): Vaccination for Neutralization of Parasite-Protective Mechanisms.- VIII. Concluding Comments.- IX. References.- 10 Immunity in Schistosomiasis: A Holistic View.- I. Introduction.- II. Host Quality and Immunity.- III. Immunogenic Stages.- A. Concomitant Immunity and the Immunogenic Role of Adult Worms.- B. Immunogenic Role of Larval Stages.- C. Immunogenic Role of Eggs.- D. Stage-Specific or Stage-Common Antigens?.- IV. Vulnerable Stages.- A. Concomitant Immunity and the Vulnerability of Larval Stages.- B. Immune Evasion.- C. Adult Worm Vulnerability.- V. Dose and Time Effects in Induction of Immunity.- A. Effect of Cercarial Dose Size on Development of Primary Infections in Nonpermissive Hosts.- B. Effect of Cercarial Dose Size on Reinfection Immunity.- C. Effect of Adult Worm Dose Size in Surgical Transfer Experiments on Reinfection Immunity.- D. Dose Effects Using Irradiated Larvae and Dead Vaccines.- E. Interaction of Worm Burden and Residence Time in the Development of Reinfection Immunity.- F. Conclusions.- VI. Influences of Host and Parasite Quality on Effective Antigenic Load.- A. Host Quality.- B. Parasite Quality.- VII. Interaction of Effective Antigenic Load and Host Genotype in Induction of Immunity.- A. Influence of Host Genotype.- B. Effector-Suppressor Switches.- VIII. Dual-Immunity Theories in Schistosomiasis.- IX. Connections Between Acquired Resistance and Egg-Induced Hypersensitivity.- A. Immunopathologic Host Changes.- B. Cercarial-Egg Antigenic Cross-Reactions and Their Possible Significance.- C. Granuloma-Associated Nonspecific Modulatory Phenomena.- D. Conclusions.- X. Concluding Remarks.- XI. References.- 11 Immunopathology of Parasitic Diseases: A Conceptual Approach.- I. Introduction.- II. Filariasis.- A. Clinical and Histologic Pathology.- B. Immunopathology of Filariasis.- III. Schistosomiasis.- A. Life Cycle.- B. Disease Spectrum.- C. Acute Pulmonary Schistosomiasis.- D. Early Systemic Schistosomiasis.- E. Chronic Schistosomiasis.- F. Schistosoma mansoni: Immunopathogenesis—Granuloma Formation and Modulation.- G. Schistosoma japonicum: Immunopathogenesis.- IV. Summary.- V. References.- 12 Cellular Immunity to Malaria and Babesia Parasites: A Personal Viewpoint.- I. Introduction.- II. Relationship of the Sickle Cell Trait to Malaria.- III. Malaria and Glucose 6-Phosphate Dehydrogenase Deficiency.- IV. Synergistic Effects of Inherited and Acquired Immunity to Malaria.- V. Role of Cell-Mediated Immunity in Malaria and Babesiosis.- VI. Nonspecific Immunity to Hemoprotozoan Infections.- VII. Antibody Independence of Immunity to Hemoprotozoa.- VIII. Multiplication of P. falciparum in Cultures of Erythrocytes with Abnormal Hbs and G6PD Deficiency.- IX. Susceptibility of Erythrocytes to Oxidant Stress.- X. Factors That Increase and Decrease Susceptibility of Erythrocytes to Oxidant Stress.- XI. Production of Superoxide and Hydrogen Peroxide by Leukocytes.- XII. Oxidant Stress Exerted on Erythrocytes by Malaria Parasites.- XIII. Effects of Oxidants on Malaria Parasites in Erythrocytes.- XIV. Tumor-Necrosis Factor, Lipoproteins, and Oxidized Lipids.- XV. Cell-Mediated Immunity and Premunition.- XVI. Synergism of Cell-Mediated Immunity and Inherited Erythrocytic Resistance.- XVII. Controversy and the Development of Science.- XVIII. References.
The phenomena involved in infections of man and domestic animals with metazoan or protozoan parasites present formidable practical problems as well as a theoretical challenge to immunologists, molecular biologists, and evolu tionary biologists. With respect to the public health and economic problems, malaria, for example, remains a major health problem with approximately 200 million people being infected yearly and, on the basis of World Health Organiza tion estimates, more than 1 million children die each year of malaria infections (Chapter 4). This volume addresses state-of-the-art immunologic approaches to the development of vaccines for parasitic diseases (Chapter 9) and analyses of studies bearing on the antigenic characterization of protozoan and metazoan parasites (Chapters 4, 5, and 7), on investigations of the role of precise mecha nisms underlying natural resistance or non permissiveness of the host to parasitic infections (Chapters 1, 2, and 12), on induced mechanisms including the genera tion of parasite-specific T-cell lines and clones (Chapter 6), and on the generation of monoclonal antibodies (Chapters 4 and 5) to parasite antigens of distinct de velopmental stages. Great progress has been made in characterizing parasite antigens capable of inducing a protective response in the vaccinated host; further progress in this area strongly depends on biochemistry and molecular biology with the long-term goal of synthesizing such antigens chemically or producing them by means of recombinant DNA technology (Chapter 4).
1 Natural Resistance to Animal Parasites.- I. Introduction.- II. Natural Resistance in Vertebrate Hosts.- III. Mechanisms of Natural Resistance.- IV. Conclusions.- V. References.- 2 Intracellular Mechanisms of Killing.- I. Introduction.- II. Parasite Interiorization by Mononuclear Phagocytes.- III. Trypanosoma cruzi: Macrophage Activation and Intracellular Killing.- IV. Toxoplasma gondii: Macrophage Activation and Intracellular Killing.- V. Leishmania spp.: Macrophage Activation and Intracellular Killing.- VI. Conclusions.- VII. References.- 3 Induction and Expression of Mucosal Immune Responses and Inflammation to Parasitic Infections.- I. Introduction.- II. The Interface: Host Cells Meet Parasite Antigens.- III. Immune Responses and Mucosal Inflammation in Parasitic Infections.- IV. Mucosal Effectors of Host Resistance.- V. Conclusions.- VI. References.- 4 Antigenic Characterization of Plasmodia.- I. Introduction.- II. Plasmodial Life Cycle.- III. Sporozoites.- IV. Exoerythrocytic Stages.- V. Asexual Erythrocytic Stages.- VI. Gametes.- VII. Conclusions and Prospects.- VIII. References.- 5 Roles of Surface Antigens on Malaria-Infected Red Blood Cells in Evasion of Immunity.- I. Introduction.- II. Immunity to Asexual Malaria Parasites.- III. Antigens on Malaria-Infected Erythrocytes-Targets of Parasiticidal Immunity?.- IV. Nature of New Antigens on Infected Cells.- V. Parasitic Evasion of Immunity-General Concepts.- VI. SICA Antigen-Immune Evasion.- VII. Knobs and Immune Evasion by Sequestration.- VIII. Concluding Remarks.- IX. References.- 6 Murine T-Cell Responses to Protozoan and Metazoan Parasites: Functional Analysis of T-Cell Lines and Clones Specific for Leishmania tropica and Schistosoma mansoni.- I. Leishmania tropica Major.- II. Schistosoma mansoni.- III.References.- 7 Immunobiology of African Trypanosomiasis.- I. Introduction.- II. Trypanosome Antigens.- III. Protective Immune Response.- IV. Deleterious Effects of the Immune Response.- V. Effects of Trypanosome Infection on the Lymphoid System.- VI. Susceptibility to Trypanosomiasis.- VII. Conclusions.- VIII. References.- 8 Rodent Models of Filariasis.- I. Introduction.- II. Responses of the Host to Developing Larvae and Adult Worms.- III. Responses of the Host to Microfilariae.- IV. Conclusions.- V. References.- 9 Examination of Strategies for Vaccination against Parasitic Infection or Disease Using Mouse Models.- I. Introduction.- II. Taenia taeniaeformis (Murine Cysticercosis): Immunoprophylaxis and Immunotherapy.- III. Leishmania tropica (Murine Cutaneous Leishmaniasis): Vaccination against Parasite Establishment or Chronic Disease.- IV. Schistosoma japonicum (Murine Schistosomiasis Japonica): Vaccination against Immunopathologic Disease.- V. Giardia muris (Murine Giardiasis): Vaccination for Accelerated Rejection of Intestinal Parasites.- VI. Nematospiroides dubius (Murine Nematodiasis): Vaccination for Accelerated Rejection of Intestinal Parasites.- VII. Fasciola hepatica (Murine Fascioliasis): Vaccination for Neutralization of Parasite-Protective Mechanisms.- VIII. Concluding Comments.- IX. References.- 10 Immunity in Schistosomiasis: A Holistic View.- I. Introduction.- II. Host Quality and Immunity.- III. Immunogenic Stages.- IV. Vulnerable Stages.- V. Dose and Time Effects in Induction of Immunity.- VI. Influences of Host and Parasite Quality on Effective Antigenic Load.- VII. Interaction of Effective Antigenic Load and Host Genotype in Induction of Immunity.- VIII. Dual-Immunity Theories in Schistosomiasis.- IX. Connections Between Acquired Resistance and Egg-Induced Hypersensitivity.- X. Concluding Remarks.- XI. References.- 11 Immunopathology of Parasitic Diseases: A Conceptual Approach.- I. Introduction.- II. Filariasis.- III. Schistosomiasis.- IV. Summary.- V. References.- 12 Cellular Immunity to Malaria and Babesia Parasites: A Personal Viewpoint.- I. Introduction.- II. Relationship of the Sickle Cell Trait to Malaria.- III. Malaria and Glucose 6-Phosphate Dehydrogenase Deficiency.- IV. Synergistic Effects of Inherited and Acquired Immunity to Malaria.- V. Role of Cell-Mediated Immunity in Malaria and Babesiosis.- VI. Nonspecific Immunity to Hemoprotozoan Infections.- VII. Antibody Independence of Immunity to Hemoprotozoa.- VIII. Multiplication of P. falciparum in Cultures of Erythrocytes with Abnormal Hbs and G6PD Deficiency.- IX. Susceptibility of Erythrocytes to Oxidant Stress.- X. Factors That Increase and Decrease Susceptibility of Erythrocytes to Oxidant Stress.- XI. Production of Superoxide and Hydrogen Peroxide by Leukocytes.- XII. Oxidant Stress Exerted on Erythrocytes by Malaria Parasites.- XIII. Effects of Oxidants on Malaria Parasites in Erythrocytes.- XIV. Tumor-Necrosis Factor, Lipoproteins, and Oxidized Lipids.- XV. Cell-Mediated Immunity and Premunition.- XVI. Synergism of Cell-Mediated Immunity and Inherited Erythrocytic Resistance.- XVII. Controversy and the Development of Science.- XVIII. References.

Inhaltsverzeichnis



1 Natural Resistance to Animal Parasites.- I. Introduction.- II. Natural Resistance in Vertebrate Hosts.- A. Strains of Inbred Mice.- B. Biozzi Strains of Mice.- C. Variations in Resistance Related to Sex and Age.- III. Mechanisms of Natural Resistance.- A. Humoral Substances.- B. Immunologically Deficient Mice.- C. Macrophages.- D. Naturally Cytotoxic Cells.- E. Resistance in Nonpermissive Prospective Hosts.- IV. Conclusions.- V. References.- 2 Intracellular Mechanisms of Killing.- I. Introduction.- II. Parasite Interiorization by Mononuclear Phagocytes.- A. Subcellular Localization.- B. Biochemical Events.- III. Trypanosoma cruzi: Macrophage Activation and Intracellular Killing.- A. Correlation with H2O2 Generation in a Murine System.- B. Correlation with H2O2 Generation in Human Mononuclear Phagocytes.- C. Triggering of H2O2 Release by Macrophages Phagocytizing T. cruzi.- IV. Toxoplasma gondii: Macrophage Activation and Intracellular Killing.- A. Correlation with the Generation of Reactive Oxygen Intermediates in a Murine System.- B. Failure to Trigger the Respiratory Burst.- V. Leishmania spp.: Macrophage Activation and Intracellular Killing.- A. Leishmania enrietti.- B. Leishmania tropica.- C. Leishmania donovani.- VI. Conclusions.- VII. References.- 3 Induction and Expression of Mucosal Immune Responses and Inflammation to Parasitic Infections.- I. Introduction.- II. The Interface: Host Cells Meet Parasite Antigens.- A. Antigens and Epithelial Cells.- B. Induction Events in Mucosal Lymphoid Aggregates.- C. Comment.- III. Immune Responses and Mucosal Inflammation in Parasitic Infections.- A. Epithelium.- B. Lamina Propria.- C. Intestinal Lumen.- IV. Mucosal Effectors of Host Resistance.- A. Parasite Elimination.- B. Host Pathology.- V. Conclusions.- VI. References.- 4 Antigenic Characterization of Plasmodia.- I. Introduction.- II. Plasmodial Life Cycle.- III. Sporozoites.- IV. Exoerythrocytic Stages.- V. Asexual Erythrocytic Stages.- A. Antigenic Characterization of the Various Asexual Erythrocytic Stages.- B. Identification of Plasmodial Antigens Relevant to Protection Using Polyclonal and Monoclonal Antibodies.- C. Circulating P. falciparum Antigens and Polypeptides Released in Culture Medium.- VI. Gametes.- VII. Conclusions and Prospects.- VIII. References.- 5 Roles of Surface Antigens on Malaria-Infected Red Blood Cells in Evasion of Immunity.- I. Introduction.- II. Immunity to Asexual Malaria Parasites.- A. Natural Infections in Humans.- B. Experimentally Induced Infections in Human Subjects and Animals.- C. Active Immunization.- D. Nature of Immune Responses.- III. Antigens on Malaria-Infected Erythrocytes-Targets of Parasiticidal Immunity?.- A. New Antigens Expressed on Malaria-Infected Erythrocytes.- B. Parasiticidal Mechanisms-Activated in Vivo by Antibody Binding to Infected Cells?.- IV. Nature of New Antigens on Infected Cells.- A. New Antigens Associated with Morphologic Alterations of the Membrane.- B. New Antigens Associated with Antigenic Variation: SICA Antigens.- C. Other New Antigens on Infected Cells.- V. Parasitic Evasion of Immunity-General Concepts.- VI. SICA Antigen-Immune Evasion.- A. Immune Evasion by Antigenic Variation.- B. Comparison of SICA [+] and SICA [?] Parasites: Evidence for Immunosuppression.- VII. Knobs and Immune Evasion by Sequestration.- A. Sequestration in Vivo.- B. Binding to Endothelial Cells and Melanoma Cells in Vitro.- C. Sequestration and Parasite Survival.- D. Role of Antibody to Knob Components in Immunity.- E. Summary of Knob Function.- VIII. Concluding Remarks.- IX. References.- 6 Murine T-Cell Responses to Protozoan and Metazoan Parasites: Functional Analysis of T-Cell Lines and Clones Specific for Leishmania tropica and Schistosoma mansoni.- I. Leishmania tropica Major.- A. Deillegalscription of Methods Used for the Functional Analysis of Specific T-Cell Responses in Mice Primed with L. tropica Antigens.- B. Influence of Infection with L. tropica on the Development of Specific T-Cell Responses in Mice.- C. Leishmania-Specific T-Cell Lines.- D. Leishmania-Specific T-Cell Clones.- E. Concluding Remarks.- II. Schistosoma mansoni.- A. Murine T-Lymphocyte-Dependent Proliferative Responses to Schistosoma Antigens: Characteristics and Specificity.- B. Helper Activity of LN Cells from Mice Primed with Schistosoma Antigens.- C. Schistosome-Specific T-Cell Lines.- D. Cloned T Cells Specific for Schistosoma Antigens.- E. Concluding Remarks.- III. References.- 7 Immunobiology of African Trypanosomiasis.- I. Introduction.- II. Trypanosome Antigens.- A. Variant-Surface Glycoprotein.- B. Internal Antigenic Determinants.- III. Protective Immune Response.- A. Antibody.- B. Cell-Mediated Immunity.- IV. Deleterious Effects of the Immune Response.- V. Effects of Trypanosome Infection on the Lymphoid System.- A. Hypergammaglobulinemia and Polyclonal Activation.- B. Immunodepression.- VI. Susceptibility to Trypanosomiasis.- A. Nonpermissive Hosts.- B. Variations of Susceptibility in Permissive Hosts.- VII. Conclusions.- VIII. References.- 8 Rodent Models of Filariasis.- I. Introduction.- II. Responses of the Host to Developing Larvae and Adult Worms.- A. Studies in Susceptible Hosts Infected with Filariae Naturally Parasitic in Rodents.- B. Studies in Rodents Susceptible to Infections with Nonrodent Filariae, Including Parasites of Humans.- C. Experimental Filariasis in Resistant Rodents.- III. Responses of the Host to Microfilariae.- A. Models of Latent Filariasis.- B. Responses to Microfilariae in Rodents Resistant to Normal Infections.- IV. Conclusions.- V. References.- 9 Examination of Strategies for Vaccination against Parasitic Infection or Disease Using Mouse Models.- I. Introduction.- II. Taenia taeniaeformis (Murine Cysticercosis): Immunoprophylaxis and Immunotherapy.- III. Leishmania tropica (Murine Cutaneous Leishmaniasis): Vaccination against Parasite Establishment or Chronic Disease.- IV. Schistosoma japonicum (Murine Schistosomiasis Japonica): Vaccination against Immunopathologic Disease.- V. Giardia muris (Murine Giardiasis): Vaccination for Accelerated Rejection of Intestinal Parasites.- VI. Nematospiroides dubius (Murine Nematodiasis): Vaccination for Accelerated Rejection of Intestinal Parasites.- VII. Fasciola hepatica (Murine Fascioliasis): Vaccination for Neutralization of Parasite-Protective Mechanisms.- VIII. Concluding Comments.- IX. References.- 10 Immunity in Schistosomiasis: A Holistic View.- I. Introduction.- II. Host Quality and Immunity.- III. Immunogenic Stages.- A. Concomitant Immunity and the Immunogenic Role of Adult Worms.- B. Immunogenic Role of Larval Stages.- C. Immunogenic Role of Eggs.- D. Stage-Specific or Stage-Common Antigens?.- IV. Vulnerable Stages.- A. Concomitant Immunity and the Vulnerability of Larval Stages.- B. Immune Evasion.- C. Adult Worm Vulnerability.- V. Dose and Time Effects in Induction of Immunity.- A. Effect of Cercarial Dose Size on Development of Primary Infections in Nonpermissive Hosts.- B. Effect of Cercarial Dose Size on Reinfection Immunity.- C. Effect of Adult Worm Dose Size in Surgical Transfer Experiments on Reinfection Immunity.- D. Dose Effects Using Irradiated Larvae and Dead Vaccines.- E. Interaction of Worm Burden and Residence Time in the Development of Reinfection Immunity.- F. Conclusions.- VI. Influences of Host and Parasite Quality on Effective Antigenic Load.- A. Host Quality.- B. Parasite Quality.- VII. Interaction of Effective Antigenic Load and Host Genotype in Induction of Immunity.- A. Influence of Host Genotype.- B. Effector-Suppressor Switches.- VIII. Dual-Immunity Theories in Schistosomiasis.- IX. Connections Between Acquired Resistance and Egg-Induced Hypersensitivity.- A. Immunopathologic Host Changes.- B. Cercarial-Egg Antigenic Cross-Reactions and Their Possible Significance.- C. Granuloma-Associated Nonspecific Modulatory Phenomena.- D. Conclusions.- X. Concluding Remarks.- XI. References.- 11 Immunopathology of Parasitic Diseases: A Conceptual Approach.- I. Introduction.- II. Filariasis.- A. Clinical and Histologic Pathology.- B. Immunopathology of Filariasis.- III. Schistosomiasis.- A. Life Cycle.- B. Disease Spectrum.- C. Acute Pulmonary Schistosomiasis.- D. Early Systemic Schistosomiasis.- E. Chronic Schistosomiasis.- F. Schistosoma mansoni: Immunopathogenesis-Granuloma Formation and Modulation.- G. Schistosoma japonicum: Immunopathogenesis.- IV. Summary.- V. References.- 12 Cellular Immunity to Malaria and Babesia Parasites: A Personal Viewpoint.- I. Introduction.- II. Relationship of the Sickle Cell Trait to Malaria.- III. Malaria and Glucose 6-Phosphate Dehydrogenase Deficiency.- IV. Synergistic Effects of Inherited and Acquired Immunity to Malaria.- V. Role of Cell-Mediated Immunity in Malaria and Babesiosis.- VI. Nonspecific Immunity to Hemoprotozoan Infections.- VII. Antibody Independence of Immunity to Hemoprotozoa.- VIII. Multiplication of P. falciparum in Cultures of Erythrocytes with Abnormal Hbs and G6PD Deficiency.- IX. Susceptibility of Erythrocytes to Oxidant Stress.- X. Factors That Increase and Decrease Susceptibility of Erythrocytes to Oxidant Stress.- XI. Production of Superoxide and Hydrogen Peroxide by Leukocytes.- XII. Oxidant Stress Exerted on Erythrocytes by Malaria Parasites.- XIII. Effects of Oxidants on Malaria Parasites in Erythrocytes.- XIV. Tumor-Necrosis Factor, Lipoproteins, and Oxidized Lipids.- XV. Cell-Mediated Immunity and Premunition.- XVI. Synergism of Cell-Mediated Immunity and Inherited Erythrocytic Resistance.- XVII. Controversy and the Development of Science.- XVIII. References.


Klappentext

The phenomena involved in infections of man and domestic animals with metazoan or protozoan parasites present formidable practical problems as well as a theoretical challenge to immunologists, molecular biologists, and evolu­ tionary biologists. With respect to the public health and economic problems, malaria, for example, remains a major health problem with approximately 200 million people being infected yearly and, on the basis of World Health Organiza­ tion estimates, more than 1 million children die each year of malaria infections (Chapter 4). This volume addresses state-of-the-art immunologic approaches to the development of vaccines for parasitic diseases (Chapter 9) and analyses of studies bearing on the antigenic characterization of protozoan and metazoan parasites (Chapters 4, 5, and 7), on investigations of the role of precise mecha­ nisms underlying natural resistance or non permissiveness of the host to parasitic infections (Chapters 1, 2, and 12), on induced mechanisms including the genera­ tion of parasite-specific T-cell lines and clones (Chapter 6), and on the generation of monoclonal antibodies (Chapters 4 and 5) to parasite antigens of distinct de­ velopmental stages. Great progress has been made in characterizing parasite antigens capable of inducing a protective response in the vaccinated host; further progress in this area strongly depends on biochemistry and molecular biology with the long-term goal of synthesizing such antigens chemically or producing them by means of recombinant DNA technology (Chapter 4).




Springer Book Archives



Datenschutz-Einstellungen