reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zuDiesen Artikel senden wir Ihnen ohne weiteren Aufpreis als PAKET

Defects in Solids
(Englisch)
Treatise on Solid State Chemistry
Hannay, N.

Print on Demand - Dieser Artikel wird für Sie gedruckt!

86,45 €

inkl. MwSt. · Portofrei
Dieses Produkt wird für Sie gedruckt, Lieferzeit ca. 14 Werktage
Menge:

Produktbeschreibung

The last quarter-century has been marked by the extremely rapid growth of the solid-state sciences. They include what is now the largest subfield of physics, and the materials engineering sciences have likewise flourished. And, playing an active role throughout this vast area of science and engineer­ ing have been very large numbers of chemists. Yet, even though the role of chemistry in the solid-state sciences has been a vital one and the solid-state sciences have, in turn, made enormous contributions to chemical thought, solid-state chemistry has not been recognized by the general body of chemists as a major subfield of chemistry. Solid-state chemistry is not even well defined as to content. Some, for example, would have it include only the quantum chemistry of solids and would reject thermodynamics and phase equilibria; this is nonsense. Solid-state chemistry has many facets, and one of the purposes of this Treatise is to help define the field. Perhaps the most general characteristic of solid-state chemistry, and one which helps differentiate it from solid-state physics, is its focus on the chemical composition and atomic configuration of real solids and on the relationship of composition and structure to the chemical and physical properties of the solid. Real solids are usually extremely complex and exhibit almost infinite variety in their compositional and structural features.
of Volume 2.- 1 Electronic Structure and Spectra of Impurities in the More Ionic Crystals.- 1. Introduction.- 2. Incorporation of Impurities and Defects in Crystals.- 2.1. Solubility and Heat of Solution of Impurities in Crystals.- 2.2. Energies of Defect Formation.- 2.3. Equilibria among Electrons, Impurities, and Defects.- 3. Electronic States of Impurity Ions in Crystals.- 3.1. The Absorption and Emission of Radiation.- 3.2. Electronic Structure and Spectroscopy of the Transition Group Ions.- 3.3. Electronic Structure and Spectroscopy of Non-Transition Group Impurities.- 3.4. Electronic Structure and Spectroscopy of Ion Pair Systems.- 4. Conclusions.- References.- 2 The Imperfect Solid—Color Centers in Ionic Crystals.- 1. Introduction.- 1.1. General.- 1.2. Scope.- 1.3. Units and Definitions.- 2. Optical Properties—Perfect Crystals.- 2.1. The Spectrum.- 2.2. The Infrared Region.- 2.3. The Ultraviolet Region.- 3. Color Centers.- 3.1. Types of Centers.- 3.2. Color Center Creation.- 3.3. Theory of Electronic Structure and Optical Properties.- 3.4. Optical Properties—Results and Interpretation.- 3.5. Other Experimental Probes.- 3.6. Color Center Chemistry.- 4. Applications: Information Storage.- Acknowledgments.- References.- Chapters 3 The Imperfect Solid—Dielectric Properties.- 1. Introduction.- 2. Introduction to Ferroelectrics.- 2.1. Outline of Ferroelectric Theory.- 2.2. Statistical Theory of Lines.- 3. Pyroelectricity.- 3.1. Introduction.- 3.2. Pyroelectric Measurements.- 3.3. Effect of Stoichiometry in Strontium Barium Niobate.- 3.4. Depollng in Triglycine Sulfate.- 3.5. Transition Metal Doping Lithium Tantalate.- 3.6. Pyroelectric PolyvinyHdene Fluoride Polymer.- 4. Nonlinear Optical Materials.- 4.1. Introduction.- 4.2. Techniques for Optical Homogeneity Determination.- 4.3. The Method of Parametric Fluorescence.- 4.4. Index Damage Measurements.- 4.5. Optical Homogeneity.- 4.6. Changing Phase-Match Temperature.- 4.7. Minimizing Optical Index Damage.- References.- 4 The Imperfect Solid—Transport Properties.- 1. Introduction.- 1.1. Types of Disorder.- 1.2. Types of Bonding.- 2. Electronic Structure of Perfect and Imperfect Solids.- 2.1. Energy Band Theory of Solids.- 2.2. Effects of Imperfections in Nearly Perfect Crystals.- 2.3. Complete Long-Range Disorder.- 3. Transport Properties of Solids.- 3.1. Transport in Metals.- 3.2. Transport in Covalent Semiconductors.- 3.3. Transport Properties of Ionic Solids.- 3.4. Mott Insulators.- 3.5. Polarons and Hopping Conduction.- 3.6. Amorphous Semiconductors.- 4. Insulator-Metal Transitions.- 4.1. Band Overlap Transitions.- 4.2. Electronically Induced Phase Transformations.- 4.3. Mott Transitions.- 5. Experimental Results.- 5.1. Metal Oxides.- 5.2. Transition Metal Oxides.- 5.3. Rare Earth Oxides and Chalcogenides.- 5.4. Amorphous Semiconductors.- 5.5. Metals.- Acknowledgments.- References.- 5 The Imperfect Solid—Semiconductors.- 1. Imperfections in Crystalline Semiconductors.- 1.1. Electronic Energy States in the Perfect Crystal.- 1.2. Atomic Point Defects.- 1.3. Dislocations, Grain Boundaries, and Surfaces.- 1.4. Excitation Defects 3462. Electron-Hole Equilibria.- 2.1. Conduction-Band Electrons and Valence-Band Holes.- 2.2. Donors and Acceptors.- 3. Electrical Properties.- 4. Optical Properties.- 4.1. Intrinsic Behavior.- 4.2. Influence of Atomic Point Defects.- 5. The Chemical Potentials in Elemental Semiconductors.- 5.1. Nonassociated Defects.- 5.2. Associated Defects.- 6. The Chemical Potentials for Binary Semiconductor Compounds.- 6.1. Thermodynamic Considerations.- 6.2. General Characteristics of the Model for a Semiconductor Compound.- 6.3. Chemical Potentials for a Binary Semiconductor Compound.- 6.4. Variations of the Basic Model.- 6.5. Refinements.- References.- 6 The Imperfect Solid—Magnetic Properties.- 1. Introduction.- 2. Intrinsic Properties.- 2.1. Saturation Magnetization.- 2.2. Exchange Constant.- 2.3. Anisotropy Constants.- 2.4. Magnetostrictive Constants.- 3. Effect of Impurities.- 3.1. Microwave Loss.- 3.2. Domain Wall Motion.- 3.3. Acoustic Loss.- 4. Structure-Sensitive Properties.- 4.1. Permeability.- 4.2. Coercive Force.- 4.3. B-H loop.- 5. Lowered Symmetry.- 5.1. Field- and Growth-Induced Anisotropy.- 5.2. Photoinduced Anisotropy.- 5.3. Jahn-Teller Effect.- Acknowledgments.- References.- 7 The Imperfect Solid—Mechanical Properties.- 1. Introduction to Plasticity.- 2. Dislocations.- 3. Plastic Deformation of Pure Single Crystal by Slip.- 3.1. Plastic Deformation of FCC Crystals.- 3.2. Plastic Deformation of Hexagonal Crystals.- 3.3. Plastic Deformation of Crystals Having the Diamond Structure (DS).- 3.4. Plastic Deformation of BCC Crystals.- 3.5. Plastic Deformation of Crystals Having the NaCl Structure.- 3.6. General Features of Stress-Strain Curves of Pure Single Crystals.- 4. Mechanical Twinning.- 5. Solid-Solution Hardening.- 5.1. Experimental Observations.- 5.2. Interaction Mechanisms between Dislocation and Solute Atoms.- 5.3. Interpretation of the Experiments on Solid-Solution Hardening.- 6. Hardening by Particles of a Second Phase.- 6.1. Cutting of Particles.- 6.2. Orowan Mechanism.- 7. Mechanical Properties of Polycrystals.- 7.1. Plastic Deformation of Polycrystals by Dislocation Mechanisms.- 7.2. Plastic Deformation of Polycrystals by Grain Boundary Sliding.- 8. Fracture.- 8.1. Fracture by Unidirectional Deformation.- 8.2. Fatigue Fracture.- 9. Anelasticity.- 9.1. Anelasticity Due to Point Defects.- 9.2. Anelasticity Due to Dislocations.- Acknowledgments.- References.
The last quarter-century has been marked by the extremely rapid growth of the solid-state sciences. They include what is now the largest subfield of physics, and the materials engineering sciences have likewise flourished. And, playing an active role throughout this vast area of science and engineer ing have been very large numbers of chemists. Yet, even though the role of chemistry in the solid-state sciences has been a vital one and the solid-state sciences have, in turn, made enormous contributions to chemical thought, solid-state chemistry has not been recognized by the general body of chemists as a major subfield of chemistry. Solid-state chemistry is not even well defined as to content. Some, for example, would have it include only the quantum chemistry of solids and would reject thermodynamics and phase equilibria; this is nonsense. Solid-state chemistry has many facets, and one of the purposes of this Treatise is to help define the field. Perhaps the most general characteristic of solid-state chemistry, and one which helps differentiate it from solid-state physics, is its focus on the chemical composition and atomic configuration of real solids and on the relationship of composition and structure to the chemical and physical properties of the solid. Real solids are usually extremely complex and exhibit almost infinite variety in their compositional and structural features.
of Volume 2.- 1 Electronic Structure and Spectra of Impurities in the More Ionic Crystals.- 1. Introduction.- 2. Incorporation of Impurities and Defects in Crystals.- 2.1. Solubility and Heat of Solution of Impurities in Crystals.- 2.2. Energies of Defect Formation.- 2.3. Equilibria among Electrons, Impurities, and Defects.- 3. Electronic States of Impurity Ions in Crystals.- 3.1. The Absorption and Emission of Radiation.- 3.2. Electronic Structure and Spectroscopy of the Transition Group Ions.- 3.3. Electronic Structure and Spectroscopy of Non-Transition Group Impurities.- 3.4. Electronic Structure and Spectroscopy of Ion Pair Systems.- 4. Conclusions.- References.- 2 The Imperfect Solid-Color Centers in Ionic Crystals.- 1. Introduction.- 1.1. General.- 1.2. Scope.- 1.3. Units and Definitions.- 2. Optical Properties-Perfect Crystals.- 2.1. The Spectrum.- 2.2. The Infrared Region.- 2.3. The Ultraviolet Region.- 3. Color Centers.- 3.1. Types of Centers.- 3.2. Color Center Creation.- 3.3. Theory of Electronic Structure and Optical Properties.- 3.4. Optical Properties-Results and Interpretation.- 3.5. Other Experimental Probes.- 3.6. Color Center Chemistry.- 4. Applications: Information Storage.- Acknowledgments.- References.- Chapters 3 The Imperfect Solid-Dielectric Properties.- 1. Introduction.- 2. Introduction to Ferroelectrics.- 2.1. Outline of Ferroelectric Theory.- 2.2. Statistical Theory of Lines.- 3. Pyroelectricity.- 3.1. Introduction.- 3.2. Pyroelectric Measurements.- 3.3. Effect of Stoichiometry in Strontium Barium Niobate.- 3.4. Depollng in Triglycine Sulfate.- 3.5. Transition Metal Doping Lithium Tantalate.- 3.6. Pyroelectric PolyvinyHdene Fluoride Polymer.- 4. Nonlinear Optical Materials.- 4.1. Introduction.- 4.2. Techniques for Optical Homogeneity Determination.- 4.3. The Method of Parametric Fluorescence.- 4.4. Index Damage Measurements.- 4.5. Optical Homogeneity.- 4.6. Changing Phase-Match Temperature.- 4.7. Minimizing Optical Index Damage.- References.- 4 The Imperfect Solid-Transport Properties.- 1. Introduction.- 1.1. Types of Disorder.- 1.2. Types of Bonding.- 2. Electronic Structure of Perfect and Imperfect Solids.- 2.1. Energy Band Theory of Solids.- 2.2. Effects of Imperfections in Nearly Perfect Crystals.- 2.3. Complete Long-Range Disorder.- 3. Transport Properties of Solids.- 3.1. Transport in Metals.- 3.2. Transport in Covalent Semiconductors.- 3.3. Transport Properties of Ionic Solids.- 3.4. Mott Insulators.- 3.5. Polarons and Hopping Conduction.- 3.6. Amorphous Semiconductors.- 4. Insulator-Metal Transitions.- 4.1. Band Overlap Transitions.- 4.2. Electronically Induced Phase Transformations.- 4.3. Mott Transitions.- 5. Experimental Results.- 5.1. Metal Oxides.- 5.2. Transition Metal Oxides.- 5.3. Rare Earth Oxides and Chalcogenides.- 5.4. Amorphous Semiconductors.- 5.5. Metals.- Acknowledgments.- References.- 5 The Imperfect Solid-Semiconductors.- 1. Imperfections in Crystalline Semiconductors.- 1.1. Electronic Energy States in the Perfect Crystal.- 1.2. Atomic Point Defects.- 1.3. Dislocations, Grain Boundaries, and Surfaces.- 1.4. Excitation Defects 3462. Electron-Hole Equilibria.- 2.1. Conduction-Band Electrons and Valence-Band Holes.- 2.2. Donors and Acceptors.- 3. Electrical Properties.- 4. Optical Properties.- 4.1. Intrinsic Behavior.- 4.2. Influence of Atomic Point Defects.- 5. The Chemical Potentials in Elemental Semiconductors.- 5.1. Nonassociated Defects.- 5.2. Associated Defects.- 6. The Chemical Potentials for Binary Semiconductor Compounds.- 6.1. Thermodynamic Considerations.- 6.2. General Characteristics of the Model for a Semiconductor Compound.- 6.3. Chemical Potentials for a Binary Semiconductor Compound.- 6.4. Variations of the Basic Model.- 6.5. Refinements.- References.- 6 The Imperfect Solid-Magnetic Properties.- 1. Introduction.- 2. Intrinsic Properties.- 2.1. Saturation Magnetization.- 2.2. Exchange Constant.- 2.3. Anisotropy Constants.- 2.4. Magnetostrictive Constants.- 3. Effect of Impurities.- 3.1. Microwave Loss.- 3.2. Domain Wall Motion.- 3.3. Acoustic Loss.- 4. Structure-Sensitive Properties.- 4.1. Permeability.- 4.2. Coercive Force.- 4.3. B-H loop.- 5. Lowered Symmetry.- 5.1. Field- and Growth-Induced Anisotropy.- 5.2. Photoinduced Anisotropy.- 5.3. Jahn-Teller Effect.- Acknowledgments.- References.- 7 The Imperfect Solid-Mechanical Properties.- 1. Introduction to Plasticity.- 2. Dislocations.- 3. Plastic Deformation of Pure Single Crystal by Slip.- 3.1. Plastic Deformation of FCC Crystals.- 3.2. Plastic Deformation of Hexagonal Crystals.- 3.3. Plastic Deformation of Crystals Having the Diamond Structure (DS).- 3.4. Plastic Deformation of BCC Crystals.- 3.5. Plastic Deformation of Crystals Having the NaCl Structure.- 3.6. General Features of Stress-Strain Curves of Pure Single Crystals.- 4. Mechanical Twinning.- 5. Solid-Solution Hardening.- 5.1. Experimental Observations.- 5.2. Interaction Mechanisms between Dislocation and Solute Atoms.- 5.3. Interpretation of the Experiments on Solid-Solution Hardening.- 6. Hardening by Particles of a Second Phase.- 6.1. Cutting of Particles.- 6.2. Orowan Mechanism.- 7. Mechanical Properties of Polycrystals.- 7.1. Plastic Deformation of Polycrystals by Dislocation Mechanisms.- 7.2. Plastic Deformation of Polycrystals by Grain Boundary Sliding.- 8. Fracture.- 8.1. Fracture by Unidirectional Deformation.- 8.2. Fatigue Fracture.- 9. Anelasticity.- 9.1. Anelasticity Due to Point Defects.- 9.2. Anelasticity Due to Dislocations.- Acknowledgments.- References.

Inhaltsverzeichnis



of Volume 2.- 1 Electronic Structure and Spectra of Impurities in the More Ionic Crystals.- 1. Introduction.- 2. Incorporation of Impurities and Defects in Crystals.- 2.1. Solubility and Heat of Solution of Impurities in Crystals.- 2.2. Energies of Defect Formation.- 2.3. Equilibria among Electrons, Impurities, and Defects.- 3. Electronic States of Impurity Ions in Crystals.- 3.1. The Absorption and Emission of Radiation.- 3.2. Electronic Structure and Spectroscopy of the Transition Group Ions.- 3.3. Electronic Structure and Spectroscopy of Non-Transition Group Impurities.- 3.4. Electronic Structure and Spectroscopy of Ion Pair Systems.- 4. Conclusions.- References.- 2 The Imperfect Solid-Color Centers in Ionic Crystals.- 1. Introduction.- 1.1. General.- 1.2. Scope.- 1.3. Units and Definitions.- 2. Optical Properties-Perfect Crystals.- 2.1. The Spectrum.- 2.2. The Infrared Region.- 2.3. The Ultraviolet Region.- 3. Color Centers.- 3.1. Types of Centers.- 3.2. Color Center Creation.- 3.3. Theory of Electronic Structure and Optical Properties.- 3.4. Optical Properties-Results and Interpretation.- 3.5. Other Experimental Probes.- 3.6. Color Center Chemistry.- 4. Applications: Information Storage.- Acknowledgments.- References.- Chapters 3 The Imperfect Solid-Dielectric Properties.- 1. Introduction.- 2. Introduction to Ferroelectrics.- 2.1. Outline of Ferroelectric Theory.- 2.2. Statistical Theory of Lines.- 3. Pyroelectricity.- 3.1. Introduction.- 3.2. Pyroelectric Measurements.- 3.3. Effect of Stoichiometry in Strontium Barium Niobate.- 3.4. Depollng in Triglycine Sulfate.- 3.5. Transition Metal Doping Lithium Tantalate.- 3.6. Pyroelectric PolyvinyHdene Fluoride Polymer.- 4. Nonlinear Optical Materials.- 4.1. Introduction.- 4.2. Techniques for Optical Homogeneity Determination.- 4.3. The Method of Parametric Fluorescence.- 4.4. Index Damage Measurements.- 4.5. Optical Homogeneity.- 4.6. Changing Phase-Match Temperature.- 4.7. Minimizing Optical Index Damage.- References.- 4 The Imperfect Solid-Transport Properties.- 1. Introduction.- 1.1. Types of Disorder.- 1.2. Types of Bonding.- 2. Electronic Structure of Perfect and Imperfect Solids.- 2.1. Energy Band Theory of Solids.- 2.2. Effects of Imperfections in Nearly Perfect Crystals.- 2.3. Complete Long-Range Disorder.- 3. Transport Properties of Solids.- 3.1. Transport in Metals.- 3.2. Transport in Covalent Semiconductors.- 3.3. Transport Properties of Ionic Solids.- 3.4. Mott Insulators.- 3.5. Polarons and Hopping Conduction.- 3.6. Amorphous Semiconductors.- 4. Insulator-Metal Transitions.- 4.1. Band Overlap Transitions.- 4.2. Electronically Induced Phase Transformations.- 4.3. Mott Transitions.- 5. Experimental Results.- 5.1. Metal Oxides.- 5.2. Transition Metal Oxides.- 5.3. Rare Earth Oxides and Chalcogenides.- 5.4. Amorphous Semiconductors.- 5.5. Metals.- Acknowledgments.- References.- 5 The Imperfect Solid-Semiconductors.- 1. Imperfections in Crystalline Semiconductors.- 1.1. Electronic Energy States in the Perfect Crystal.- 1.2. Atomic Point Defects.- 1.3. Dislocations, Grain Boundaries, and Surfaces.- 1.4. Excitation Defects 3462. Electron-Hole Equilibria.- 2.1. Conduction-Band Electrons and Valence-Band Holes.- 2.2. Donors and Acceptors.- 3. Electrical Properties.- 4. Optical Properties.- 4.1. Intrinsic Behavior.- 4.2. Influence of Atomic Point Defects.- 5. The Chemical Potentials in Elemental Semiconductors.- 5.1. Nonassociated Defects.- 5.2. Associated Defects.- 6. The Chemical Potentials for Binary Semiconductor Compounds.- 6.1. Thermodynamic Considerations.- 6.2. General Characteristics of the Model for a Semiconductor Compound.- 6.3. Chemical Potentials for a Binary Semiconductor Compound.- 6.4. Variations of the Basic Model.- 6.5. Refinements.- References.- 6 The Imperfect Solid-Magnetic Properties.- 1. Introduction.- 2. Intrinsic Properties.- 2.1. Saturation Magnetization.- 2.2. Exchange Constant.- 2.3. Anisotropy Constants.- 2.4. Magnetostrictive Constants.- 3. Effect of Impurities.- 3.1. Microwave Loss.- 3.2. Domain Wall Motion.- 3.3. Acoustic Loss.- 4. Structure-Sensitive Properties.- 4.1. Permeability.- 4.2. Coercive Force.- 4.3. B-H loop.- 5. Lowered Symmetry.- 5.1. Field- and Growth-Induced Anisotropy.- 5.2. Photoinduced Anisotropy.- 5.3. Jahn-Teller Effect.- Acknowledgments.- References.- 7 The Imperfect Solid-Mechanical Properties.- 1. Introduction to Plasticity.- 2. Dislocations.- 3. Plastic Deformation of Pure Single Crystal by Slip.- 3.1. Plastic Deformation of FCC Crystals.- 3.2. Plastic Deformation of Hexagonal Crystals.- 3.3. Plastic Deformation of Crystals Having the Diamond Structure (DS).- 3.4. Plastic Deformation of BCC Crystals.- 3.5. Plastic Deformation of Crystals Having the NaCl Structure.- 3.6. General Features of Stress-Strain Curves of Pure Single Crystals.- 4. Mechanical Twinning.- 5. Solid-Solution Hardening.- 5.1. Experimental Observations.- 5.2. Interaction Mechanisms between Dislocation and Solute Atoms.- 5.3. Interpretation of the Experiments on Solid-Solution Hardening.- 6. Hardening by Particles of a Second Phase.- 6.1. Cutting of Particles.- 6.2. Orowan Mechanism.- 7. Mechanical Properties of Polycrystals.- 7.1. Plastic Deformation of Polycrystals by Dislocation Mechanisms.- 7.2. Plastic Deformation of Polycrystals by Grain Boundary Sliding.- 8. Fracture.- 8.1. Fracture by Unidirectional Deformation.- 8.2. Fatigue Fracture.- 9. Anelasticity.- 9.1. Anelasticity Due to Point Defects.- 9.2. Anelasticity Due to Dislocations.- Acknowledgments.- References.


Klappentext



The last quarter-century has been marked by the extremely rapid growth of the solid-state sciences. They include what is now the largest subfield of physics, and the materials engineering sciences have likewise flourished. And, playing an active role throughout this vast area of science and engineer­ ing have been very large numbers of chemists. Yet, even though the role of chemistry in the solid-state sciences has been a vital one and the solid-state sciences have, in turn, made enormous contributions to chemical thought, solid-state chemistry has not been recognized by the general body of chemists as a major subfield of chemistry. Solid-state chemistry is not even well defined as to content. Some, for example, would have it include only the quantum chemistry of solids and would reject thermodynamics and phase equilibria; this is nonsense. Solid-state chemistry has many facets, and one of the purposes of this Treatise is to help define the field. Perhaps the most general characteristic of solid-state chemistry, and one which helps differentiate it from solid-state physics, is its focus on the chemical composition and atomic configuration of real solids and on the relationship of composition and structure to the chemical and physical properties of the solid. Real solids are usually extremely complex and exhibit almost infinite variety in their compositional and structural features.




Springer Book Archives



Datenschutz-Einstellungen