reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zuDiesen Artikel senden wir Ihnen ohne weiteren Aufpreis als PAKET

Laser Applications in Medicine and Biology
(Englisch)
Volume 2
Myron Wolbarsht

Print on Demand - Dieser Artikel wird für Sie gedruckt!

44,95 €

inkl. MwSt. · Portofrei
Dieses Produkt wird für Sie gedruckt, Lieferzeit ca. 14 Werktage
Menge:

Produktbeschreibung

In the intervening years since the publication of Volume I, the develop­ ment of new uses for the various types of lasers has proceeded at a rate more rapid than even the most fanciful dreamers envisioned. Of course, the main effort has been on the laser itself-new wavelengths, shorter and longer time domains for pulses, increases in power, and, most important, greater reliability. In its first stage the laser was described as a solution in search of a problem. The production of holograms was one problem whose solution seemed to involve large number of lasers. However that proposal had its own difficulties, for the hologram itself was described as a solution searching for a problem. But all of that now is a chapter from ancient history . On the current scene the laser is used in industrial pro­ duction lines, as a classroom item at all levels of education, and in com­ mercial usage such that the public is generally exposed to the laser devices themselves. Trial runs have been made, e. g. , of laser-based supermarket checkout devices and as commercial exploitation of this item begins, cer­ tainly many more similar adaptations will follow. However, the shift in emphasis from research usage of lasers to de­ velopment and production has been relative rather than absolute. The use of the laser in research has not lessened; rather it has grown at as fast a pace. Yet a similar trend is seen there also.
1 Microbeams.- 1. Introduction.- 2. Instrumentation.- 2.1. General Considerations.- 2.2. Ruby Laser Microbeams.- 2.3. Argon Laser Microbeams.- 2.4. Neodymium Laser Microbeams.- 2.5. Other Laser Microbeam-Like Systems.- 2.6. Available Laser Wavelengths.- 3. Methodologies Employed with Microbeam Irradiation.- 3.1. Cell Culture.- 3.2. Vital Dye Sensitization.- 3.3. Light Microscopy.- 3.4. Electron Microscopy.- 3.5. Biochemical Analysis.- 4. Studies on Cell Function and Structure.- 4.1. Multicellular Plants.- 4.2. Unicellular Organisms.- 4.3. Embryos and Eggs.- 4.4. Tissue Culture Cells—Ruby and Neodymium Lasers.- 4.5. Tissue Culture Cells—Argon Laser.- 4.6. Microbeam Studies on the Nervous System.- 5. Conclusion.- Acknowledgments.- References.- 2 Lasers in Ophthalmology.- 1. Introduction.- 2. Coherence.- 3. Consequences of Coherence.- 3.1. Fringe Visibility.- 3.2. Beam Collimation.- 3.3. Resolution.- 4. Lasers.- 4.1. Ideal and Real Lasers.- 4.2. Lasers Used in Ophthalmology.- 5. The Eye.- 6. The Laser Refractor.- 7. Laser Acuity Testing.- 7.1. The Acuity of the Eye.- 7.2. Modulation Transfer Function.- 7.3. Laser Visual Acuity Tester.- 8. Retinal Visual Acuity in the Case of Cataracts.- 9. The Laser Cane.- 10. Laser Treatment for Corneal Ulcers.- 11. Laser Photocoagulation.- 11.1 Ruby Laser Coagulator.- 11.2. Argon Ion Laser Coagulator.- 12. Conclusion.- References.- 3 Holography of the Eye: A Critical Review.- 1. Introduction.- 2. Applications.- 2.1. Three-Dimensional Records.- 2.2. Detection of Abnormalities.- 2.3. Measurement of Abnormalities in Three Dimensions.- 2.4. Information Storage.- 2.5. Retrospective Study of the Entire Eye.- 2.6. Contour Mapping.- 2.7. Measurement of Changes Within the Eye.- 2.8. High Resolution of Fundus.- 2.9. Measurement of Optical Constants of the Eye.- 3. Possible Methods of Hologram Formation.- 3.1. Fresnel Hologram.- 3.2. Fraunhofer Hologram.- 3.3. Fourier Transform Hologram.- 3.4. Lensless Fourier Transform Hologram.- 4. Methods of Achieving Magnification.- 4.1. Magnification Due Solely to the Holographic Process.- 4.2. Holography of a Premagnified Object.- 4.3. Magnification Subsequent to the Holographic Process.- 5. Special Holographic Techniques.- 5.1. Holographic Interferometry.- 5.2. Holographic Contour Generation.- 6. Choice of Parameters.- 6.1. Wavelength.- 6.2. Retinal Energy Density.- 6.3. Exposure Duration.- 6.4. Recording Materials.- 7. Speckle.- 8. Holograms of the Eye.- 9. Proposed Applications of Ocular Holography.- 9.1. Holographic Interferometry.- 9.2. High Resolution Image of the Optic Fundus.- 9.3. Measurement of Optical Constants of the Eye.- 10. Summary.- Acknowledgments.- Appendix—Information Content of Eye Holograms.- References.- 4 Quantitative Laser Microprobe Analysis.- 1. Introduction.- 2. Instrumentation.- 2.1. Laser Head.- 2.2. Microscope Head.- 2.3. Emission Spectrography.- 2.4. Mass Spectrometry.- 2.5. Atomic Absorption.- 3. Standardization.- 4. Sample Preparation.- 5. Applications.- 5.1. Forensic and Toxicological Applications.- 5.2. Applications to Tissues.- 5.3. Applications to Teeth, Bones, and Skin.- 5.4. Applications to Body Fluids.- 5.5. Applications to Plants.- 5.6. Applications to Nonmammalian Biology.- 6. Sensitivity.- 7. Laser Microprobe vs. Other Probes.- 8. Conclusions.- References.- 5 Laser Flow Microphotometers for Rapid Analysis and Sorting of Individual Mammalian Cells.- 1. Introduction.- 2. Flow Microphotometry.- 2.1. General Considerations.- 2.2. Laminar Flow Chamber.- 2.3. Input Beam Optics.- 2.4. Light Collection Systems.- 2.5. Electronic Signal Processing.- 3. Flow Microfluorometry (FMF).- 3.1. FMF II.- 3.2. Beam Optics.- 3.3. Signal Processing.- 3.4. Results.- 3.5. Resolution.- 4. Biological Applications of FMF II.- 4.1. Life Cycle Analysis and Relative DNA Quantitation.- 4.2. Chemotherapeutic Agent Effects.- 4.3. Cell-Surface Architecture Studies.- 4.4. Fluorescein-Labeled Antigen—Antibody Measurements.- 5. Preparation of Cell Samples for FMF Analysis.- 5.1. Cell Dispersal and Fixation.- 5.2. DNA Staining Procedures.- 5.3. Protein Staining.- 6. Multiparameter Cell Analysis and Sorting.- 6.1. Deillegalscription of the Multiparameter Cell Sorter (MPS-1).- 6.2. Electronic Cell Sensing.- 6.3. Fluorescence Detection.- 6.4. Light Scattering.- 6.5. Multiparameter Signal Processing.- 6.6. Multiparameter Analysis and Sorting Applications.- 6.7. Tumor Cell Identification and Separation.- 6.8. White Blood Cell Differential.- 7. Light Scattering.- 7.1. Models for Mammalian Cells.- 7.2. Exact Electromagnetic Theory Considerations.- 7.3. Experimental Verification for Live Mammalian Cells in Suspension.- 7.4. Flow Microphotometric Measurements.- 8. Future Applications.- 8.1. Instrumentation.- 8.2. Biological Applications.- Acknowledgments.- References.- 6 Biological Damage Resulting from Thermal Pulses.- 1. Introduction.- 2. Calculation of the Temperature Distribution.- 3. Chemical Rate Equations.- 4. Biological Results at Elevated Temperatures.- Acknowledgments.- References.- 7 Laser Protective Eyewear.- 1. Introduction.- 2. Applications.- 3. Laser Viewing Enhancement Goggles.- 4. Parameters of Laser Eye Protection.- 4.1. Wavelength.- 4.2. Optical Density.- 4.3. Laser Beam Irradiance or Radiant Exposure.- 4.4. Visual Transmittance of Eyewear.- 4.5. Laser Filter Damage Threshold (Maximum Irradiance).- 4.6. Filter Curvature.- 5. Methods of Construction.- 6. Selecting Appropriate Eyewear.- 7. Commercial Sources of Laser Eye Protection.- 8. Testing Laser Eye Protection.- 9. Marking of Eye Protection.- 10. Eye Protection for Infrared Lasers.- 11. Eye Protection for Pump Lamps and Tunable Wavelength Lasers.- 12. Polarizing Filters.- 13. Dynamic Eye Protection Devices.- 14. Future Developments.- References.- 8 Lasers in Surgery.- 1. Introduction.- 1.1. Scope of Review.- 1.2. Characteristics of Lasers.- 1.3. Interaction of Radiation with Tissue.- 2. Critical Review and History of Laser Surgery.- 2.1. Pulsed Ruby and Neodymium Laser Surgery.- 2.2. Carbon Dioxide Laser Surgery.- 3. Carbon Dioxide Laser Surgery.- 3.1. Instrumentation.- 3.2. Surgical Applications—Clinical and Experimental.- 4. Surgical Applications of Other Lasers.- 4.1. Ruby Laser.- 4.2. Argon Ion Laser.- 4.3. Neodymium in Yttrium, Aluminum, Garnet (Nd YAG).- 5. The Future of Lasers in Surgery.- 6. Summary and Conclusions.- Acknowledgments.- References.- 9 The Carbon Dioxide Laser in Clinical Surgery.- 1. Introduction.- 1.1. Skin Healing.- 1.2. Skin Grafts.- 1.3. Hemostatic Effect.- 1.4. Postoperative Pain.- 2. Observations on the Applicability of the Carbon Dioxide Laser in Specific Clinical Conditions.- 2.1. Burns.- 2.2. Mastopathy.- 2.3. Hemangioma.- 2.4. Cervical Erosions.- 2.5. Hemorrhoids.- 2.6. Malignant Tumors.- 2.7. Rectal Carcinoma.- 3. Design and Development of a New Carbon Dioxide Surgical Laser.- 3.1. The Laser and Optical Bench.- 3.2. The Articulated Arm and Balancing System.- 3.3. The Manipulator.- 3.4. Safety Measures.- 3.5. Mobility and Compactness of the System.- 3.6. Remote Control.- 3.7. Attachments for Specific Surgical Procedures.- 4. Conclusions.- References.- 10 The Formulation of Protection Standards for Lasers.- 1. Introduction.- 1.1. Application of the Protection Standards.- 1.2. The Need for Regulations.- 2. Analysis of Safety Regulations in Massachusetts.- 2.1. Philosophy of Laser Regulation and Registration.- 2.2. Definitions.- 2.3. Exemptions and Exceptions.- 2.4. Data Collection.- 2.5. Protection Standards.- 2.6. Measurements for Conformance and Survey.- 2.7. Regulation.- 2.8. Specific Precautions for Outdoor Installations.- 2.9. Personnel Protection.- 2.10. Medical Surveillance.- 2.11. Appendix to Massachusetts Board of Health Rules and Regulations.- 3. The Outlook for Federal Regulations.- 4. State Regulations in the United States.- 5. Protection Standards for Retinal Hazards: Considerations of Biological Data.- 5.1. Useful Presentation of Biological Data.- 5.2. Sources of Error in the Biological Data.- 5.3. Laser Accident Data.- 5.4. Combining Data Points.- 5.5. Standards for Different Wavelengths.- 6. The Selection of Proper Format and Levels—Neither Too Detailed Nor Too Conservative.- 6.1. The Degree of Safety.- 6.2. Military Protection Standards.- 6.3. Specification of Protection Standards.- 6.4. Retinal Exposure Levels and Corneal Exposure Levels.- 6.5. Specification of Pupil Size.- 7. Extrapolation.- 7.1. Interpreting the Biological Data.- 7.2. From Cornea to Retina and Back Again.- 7.3. Relation Between Different Retinal Image Sizes and Associated Retinal Injury Thresholds.- 7.4. Thermal Models.- 7.5. Retinal Detachment.- 7.6. Melanin Granules in Pigment Epithelium as Local Hot Spots.- 7.7. Other Factors Influencing Laser Injury Spot Size: Biological and Physical Amplification.- 7.8. Infrared and Ultraviolet Laser Protection Standards.- 8. The ANSI-Z-136 Standards.- 8.1. Formulation of Protection Standard Exposure Levels.- 8.2. Limiting Apertures.- 8.3. Extended Sources.- 8.4. Correction Factor A (CA).- 8.5. Repetitively Pulsed Lasers.- 8.6. Laser Hazard Classification.- 9. Other Standards.- 10. Present Problems and Future Plans.- References.- 11 Dentistry and the Laser.- 1. Introduction.- 1.1. Anatomy of Dental Structures.- 1.2. Dental Diseases.- 2. Early Laser Investigations.- 3. Investigations Leading to Laser-Induced Caries Inhibition.- 3.1. Ruby Laser.- 3.2. Pulsed Carbon Dioxide Laser.- 4. Laser Effects on Dental Soft Tissue.- 5. Potential Applications.- 6. Summary.- Acknowledgments.- References.- Author Index.
On the current scene the laser is used in industrial pro duction lines, as a classroom item at all levels of education, and in com mercial usage such that the public is generally exposed to the laser devices themselves.
In the intervening years since the publication of Volume I, the develop ment of new uses for the various types of lasers has proceeded at a rate more rapid than even the most fanciful dreamers envisioned. Of course, the main effort has been on the laser itself-new wavelengths, shorter and longer time domains for pulses, increases in power, and, most important, greater reliability. In its first stage the laser was described as a solution in search of a problem. The production of holograms was one problem whose solution seemed to involve large number of lasers. However that proposal had its own difficulties, for the hologram itself was described as a solution searching for a problem. But all of that now is a chapter from ancient history . On the current scene the laser is used in industrial pro duction lines, as a classroom item at all levels of education, and in com mercial usage such that the public is generally exposed to the laser devices themselves. Trial runs have been made, e. g. , of laser-based supermarket checkout devices and as commercial exploitation of this item begins, cer tainly many more similar adaptations will follow. However, the shift in emphasis from research usage of lasers to de velopment and production has been relative rather than absolute. The use of the laser in research has not lessened; rather it has grown at as fast a pace. Yet a similar trend is seen there also.
1 Microbeams.- 1. Introduction.- 2. Instrumentation.- 2.1. General Considerations.- 2.2. Ruby Laser Microbeams.- 2.3. Argon Laser Microbeams.- 2.4. Neodymium Laser Microbeams.- 2.5. Other Laser Microbeam-Like Systems.- 2.6. Available Laser Wavelengths.- 3. Methodologies Employed with Microbeam Irradiation.- 3.1. Cell Culture.- 3.2. Vital Dye Sensitization.- 3.3. Light Microscopy.- 3.4. Electron Microscopy.- 3.5. Biochemical Analysis.- 4. Studies on Cell Function and Structure.- 4.1. Multicellular Plants.- 4.2. Unicellular Organisms.- 4.3. Embryos and Eggs.- 4.4. Tissue Culture Cells-Ruby and Neodymium Lasers.- 4.5. Tissue Culture Cells-Argon Laser.- 4.6. Microbeam Studies on the Nervous System.- 5. Conclusion.- Acknowledgments.- References.- 2 Lasers in Ophthalmology.- 1. Introduction.- 2. Coherence.- 3. Consequences of Coherence.- 3.1. Fringe Visibility.- 3.2. Beam Collimation.- 3.3. Resolution.- 4. Lasers.- 4.1. Ideal and Real Lasers.- 4.2. Lasers Used in Ophthalmology.- 5. The Eye.- 6. The Laser Refractor.- 7. Laser Acuity Testing.- 7.1. The Acuity of the Eye.- 7.2. Modulation Transfer Function.- 7.3. Laser Visual Acuity Tester.- 8. Retinal Visual Acuity in the Case of Cataracts.- 9. The Laser Cane.- 10. Laser Treatment for Corneal Ulcers.- 11. Laser Photocoagulation.- 11.1 Ruby Laser Coagulator.- 11.2. Argon Ion Laser Coagulator.- 12. Conclusion.- References.- 3 Holography of the Eye: A Critical Review.- 1. Introduction.- 2. Applications.- 2.1. Three-Dimensional Records.- 2.2. Detection of Abnormalities.- 2.3. Measurement of Abnormalities in Three Dimensions.- 2.4. Information Storage.- 2.5. Retrospective Study of the Entire Eye.- 2.6. Contour Mapping.- 2.7. Measurement of Changes Within the Eye.- 2.8. High Resolution of Fundus.- 2.9. Measurement of Optical Constants of the Eye.- 3. Possible Methods of Hologram Formation.- 3.1. Fresnel Hologram.- 3.2. Fraunhofer Hologram.- 3.3. Fourier Transform Hologram.- 3.4. Lensless Fourier Transform Hologram.- 4. Methods of Achieving Magnification.- 4.1. Magnification Due Solely to the Holographic Process.- 4.2. Holography of a Premagnified Object.- 4.3. Magnification Subsequent to the Holographic Process.- 5. Special Holographic Techniques.- 5.1. Holographic Interferometry.- 5.2. Holographic Contour Generation.- 6. Choice of Parameters.- 6.1. Wavelength.- 6.2. Retinal Energy Density.- 6.3. Exposure Duration.- 6.4. Recording Materials.- 7. Speckle.- 8. Holograms of the Eye.- 9. Proposed Applications of Ocular Holography.- 9.1. Holographic Interferometry.- 9.2. High Resolution Image of the Optic Fundus.- 9.3. Measurement of Optical Constants of the Eye.- 10. Summary.- Acknowledgments.- Appendix-Information Content of Eye Holograms.- References.- 4 Quantitative Laser Microprobe Analysis.- 1. Introduction.- 2. Instrumentation.- 2.1. Laser Head.- 2.2. Microscope Head.- 2.3. Emission Spectrography.- 2.4. Mass Spectrometry.- 2.5. Atomic Absorption.- 3. Standardization.- 4. Sample Preparation.- 5. Applications.- 5.1. Forensic and Toxicological Applications.- 5.2. Applications to Tissues.- 5.3. Applications to Teeth, Bones, and Skin.- 5.4. Applications to Body Fluids.- 5.5. Applications to Plants.- 5.6. Applications to Nonmammalian Biology.- 6. Sensitivity.- 7. Laser Microprobe vs. Other Probes.- 8. Conclusions.- References.- 5 Laser Flow Microphotometers for Rapid Analysis and Sorting of Individual Mammalian Cells.- 1. Introduction.- 2. Flow Microphotometry.- 2.1. General Considerations.- 2.2. Laminar Flow Chamber.- 2.3. Input Beam Optics.- 2.4. Light Collection Systems.- 2.5. Electronic Signal Processing.- 3. Flow Microfluorometry (FMF).- 3.1. FMF II.- 3.2. Beam Optics.- 3.3. Signal Processing.- 3.4. Results.- 3.5. Resolution.- 4. Biological Applications of FMF II.- 4.1. Life Cycle Analysis and Relative DNA Quantitation.- 4.2. Chemotherapeutic Agent Effects.- 4.3. Cell-Surface Architecture Studies.- 4.4. Fluorescein-Labeled Antigen-Antibody Measurements.- 5. Preparation of Cell Samples for FMF Analysis.- 5.1. Cell Dispersal and Fixation.- 5.2. DNA Staining Procedures.- 5.3. Protein Staining.- 6. Multiparameter Cell Analysis and Sorting.- 6.1. Deillegalscription of the Multiparameter Cell Sorter (MPS-1).- 6.2. Electronic Cell Sensing.- 6.3. Fluorescence Detection.- 6.4. Light Scattering.- 6.5. Multiparameter Signal Processing.- 6.6. Multiparameter Analysis and Sorting Applications.- 6.7. Tumor Cell Identification and Separation.- 6.8. White Blood Cell Differential.- 7. Light Scattering.- 7.1. Models for Mammalian Cells.- 7.2. Exact Electromagnetic Theory Considerations.- 7.3. Experimental Verification for Live Mammalian Cells in Suspension.- 7.4. Flow Microphotometric Measurements.- 8. Future Applications.- 8.1. Instrumentation.- 8.2. Biological Applications.- Acknowledgments.- References.- 6 Biological Damage Resulting from Thermal Pulses.- 1. Introduction.- 2. Calculation of the Temperature Distribution.- 3. Chemical Rate Equations.- 4. Biological Results at Elevated Temperatures.- Acknowledgments.- References.- 7 Laser Protective Eyewear.- 1. Introduction.- 2. Applications.- 3. Laser Viewing Enhancement Goggles.- 4. Parameters of Laser Eye Protection.- 4.1. Wavelength.- 4.2. Optical Density.- 4.3. Laser Beam Irradiance or Radiant Exposure.- 4.4. Visual Transmittance of Eyewear.- 4.5. Laser Filter Damage Threshold (Maximum Irradiance).- 4.6. Filter Curvature.- 5. Methods of Construction.- 6. Selecting Appropriate Eyewear.- 7. Commercial Sources of Laser Eye Protection.- 8. Testing Laser Eye Protection.- 9. Marking of Eye Protection.- 10. Eye Protection for Infrared Lasers.- 11. Eye Protection for Pump Lamps and Tunable Wavelength Lasers.- 12. Polarizing Filters.- 13. Dynamic Eye Protection Devices.- 14. Future Developments.- References.- 8 Lasers in Surgery.- 1. Introduction.- 1.1. Scope of Review.- 1.2. Characteristics of Lasers.- 1.3. Interaction of Radiation with Tissue.- 2. Critical Review and History of Laser Surgery.- 2.1. Pulsed Ruby and Neodymium Laser Surgery.- 2.2. Carbon Dioxide Laser Surgery.- 3. Carbon Dioxide Laser Surgery.- 3.1. Instrumentation.- 3.2. Surgical Applications-Clinical and Experimental.- 4. Surgical Applications of Other Lasers.- 4.1. Ruby Laser.- 4.2. Argon Ion Laser.- 4.3. Neodymium in Yttrium, Aluminum, Garnet (Nd YAG).- 5. The Future of Lasers in Surgery.- 6. Summary and Conclusions.- Acknowledgments.- References.- 9 The Carbon Dioxide Laser in Clinical Surgery.- 1. Introduction.- 1.1. Skin Healing.- 1.2. Skin Grafts.- 1.3. Hemostatic Effect.- 1.4. Postoperative Pain.- 2. Observations on the Applicability of the Carbon Dioxide Laser in Specific Clinical Conditions.- 2.1. Burns.- 2.2. Mastopathy.- 2.3. Hemangioma.- 2.4. Cervical Erosions.- 2.5. Hemorrhoids.- 2.6. Malignant Tumors.- 2.7. Rectal Carcinoma.- 3. Design and Development of a New Carbon Dioxide Surgical Laser.- 3.1. The Laser and Optical Bench.- 3.2. The Articulated Arm and Balancing System.- 3.3. The Manipulator.- 3.4. Safety Measures.- 3.5. Mobility and Compactness of the System.- 3.6. Remote Control.- 3.7. Attachments for Specific Surgical Procedures.- 4. Conclusions.- References.- 10 The Formulation of Protection Standards for Lasers.- 1. Introduction.- 1.1. Application of the Protection Standards.- 1.2. The Need for Regulations.- 2. Analysis of Safety Regulations in Massachusetts.- 2.1. Philosophy of Laser Regulation and Registration.- 2.2. Definitions.- 2.3. Exemptions and Exceptions.- 2.4. Data Collection.- 2.5. Protection Standards.- 2.6. Measurements for Conformance and Survey.- 2.7. Regulation.- 2.8. Specific Precautions for Outdoor Installations.- 2.9. Personnel Protection.- 2.10. Medical Surveillance.- 2.11. Appendix to Massachusetts Board of Health Rules and Regulations.- 3. The Outlook for Federal Regulations.- 4. State Regulations in the United States.- 5. Protection Standards for Retinal Hazards: Considerations of Biological Data.- 5.1. Useful Presentation of Biological Data.- 5.2. Sources of Error in the Biological Data.- 5.3. Laser Accident Data.- 5.4. Combining Data Points.- 5.5. Standards for Different Wavelengths.- 6. The Selection of Proper Format and Levels-Neither Too Detailed Nor Too Conservative.- 6.1. The Degree of Safety.- 6.2. Military Protection Standards.- 6.3. Specification of Protection Standards.- 6.4. Retinal Exposure Levels and Corneal Exposure Levels.- 6.5. Specification of Pupil Size.- 7. Extrapolation.- 7.1. Interpreting the Biological Data.- 7.2. From Cornea to Retina and Back Again.- 7.3. Relation Between Different Retinal Image Sizes and Associated Retinal Injury Thresholds.- 7.4. Thermal Models.- 7.5. Retinal Detachment.- 7.6. Melanin Granules in Pigment Epithelium as Local Hot Spots.- 7.7. Other Factors Influencing Laser Injury Spot Size: Biological and Physical Amplification.- 7.8. Infrared and Ultraviolet Laser Protection Standards.- 8. The ANSI-Z-136 Standards.- 8.1. Formulation of Protection Standard Exposure Levels.- 8.2. Limiting Apertures.- 8.3. Extended Sources.- 8.4. Correction Factor A (CA).- 8.5. Repetitively Pulsed Lasers.- 8.6. Laser Hazard Classification.- 9. Other Standards.- 10. Present Problems and Future Plans.- References.- 11 Dentistry and the Laser.- 1. Introduction.- 1.1. Anatomy of Dental Structures.- 1.2. Dental Diseases.- 2. Early Laser Investigations.- 3. Investigations Leading to Laser-Induced Caries Inhibition.- 3.1. Ruby Laser.- 3.2. Pulsed Carbon Dioxide Laser.- 4. Laser Effects on Dental Soft Tissue.- 5. Potential Applications.- 6. Summary.- Acknowledgments.- References.- Author Index.

Inhaltsverzeichnis



1 Microbeams.- 1. Introduction.- 2. Instrumentation.- 2.1. General Considerations.- 2.2. Ruby Laser Microbeams.- 2.3. Argon Laser Microbeams.- 2.4. Neodymium Laser Microbeams.- 2.5. Other Laser Microbeam-Like Systems.- 2.6. Available Laser Wavelengths.- 3. Methodologies Employed with Microbeam Irradiation.- 3.1. Cell Culture.- 3.2. Vital Dye Sensitization.- 3.3. Light Microscopy.- 3.4. Electron Microscopy.- 3.5. Biochemical Analysis.- 4. Studies on Cell Function and Structure.- 4.1. Multicellular Plants.- 4.2. Unicellular Organisms.- 4.3. Embryos and Eggs.- 4.4. Tissue Culture Cells¿Ruby and Neodymium Lasers.- 4.5. Tissue Culture Cells¿Argon Laser.- 4.6. Microbeam Studies on the Nervous System.- 5. Conclusion.- Acknowledgments.- References.- 2 Lasers in Ophthalmology.- 1. Introduction.- 2. Coherence.- 3. Consequences of Coherence.- 3.1. Fringe Visibility.- 3.2. Beam Collimation.- 3.3. Resolution.- 4. Lasers.- 4.1. Ideal and Real Lasers.- 4.2. Lasers Used in Ophthalmology.- 5. The Eye.- 6. The Laser Refractor.- 7. Laser Acuity Testing.- 7.1. The Acuity of the Eye.- 7.2. Modulation Transfer Function.- 7.3. Laser Visual Acuity Tester.- 8. Retinal Visual Acuity in the Case of Cataracts.- 9. The Laser Cane.- 10. Laser Treatment for Corneal Ulcers.- 11. Laser Photocoagulation.- 11.1 Ruby Laser Coagulator.- 11.2. Argon Ion Laser Coagulator.- 12. Conclusion.- References.- 3 Holography of the Eye: A Critical Review.- 1. Introduction.- 2. Applications.- 2.1. Three-Dimensional Records.- 2.2. Detection of Abnormalities.- 2.3. Measurement of Abnormalities in Three Dimensions.- 2.4. Information Storage.- 2.5. Retrospective Study of the Entire Eye.- 2.6. Contour Mapping.- 2.7. Measurement of Changes Within the Eye.- 2.8. High Resolution of Fundus.- 2.9. Measurement of Optical Constants of the Eye.- 3. Possible Methods of Hologram Formation.- 3.1. Fresnel Hologram.- 3.2. Fraunhofer Hologram.- 3.3. Fourier Transform Hologram.- 3.4. Lensless Fourier Transform Hologram.- 4. Methods of Achieving Magnification.- 4.1. Magnification Due Solely to the Holographic Process.- 4.2. Holography of a Premagnified Object.- 4.3. Magnification Subsequent to the Holographic Process.- 5. Special Holographic Techniques.- 5.1. Holographic Interferometry.- 5.2. Holographic Contour Generation.- 6. Choice of Parameters.- 6.1. Wavelength.- 6.2. Retinal Energy Density.- 6.3. Exposure Duration.- 6.4. Recording Materials.- 7. Speckle.- 8. Holograms of the Eye.- 9. Proposed Applications of Ocular Holography.- 9.1. Holographic Interferometry.- 9.2. High Resolution Image of the Optic Fundus.- 9.3. Measurement of Optical Constants of the Eye.- 10. Summary.- Acknowledgments.- Appendix¿Information Content of Eye Holograms.- References.- 4 Quantitative Laser Microprobe Analysis.- 1. Introduction.- 2. Instrumentation.- 2.1. Laser Head.- 2.2. Microscope Head.- 2.3. Emission Spectrography.- 2.4. Mass Spectrometry.- 2.5. Atomic Absorption.- 3. Standardization.- 4. Sample Preparation.- 5. Applications.- 5.1. Forensic and Toxicological Applications.- 5.2. Applications to Tissues.- 5.3. Applications to Teeth, Bones, and Skin.- 5.4. Applications to Body Fluids.- 5.5. Applications to Plants.- 5.6. Applications to Nonmammalian Biology.- 6. Sensitivity.- 7. Laser Microprobe vs. Other Probes.- 8. Conclusions.- References.- 5 Laser Flow Microphotometers for Rapid Analysis and Sorting of Individual Mammalian Cells.- 1. Introduction.- 2. Flow Microphotometry.- 2.1. General Considerations.- 2.2. Laminar Flow Chamber.- 2.3. Input Beam Optics.- 2.4. Light Collection Systems.- 2.5. Electronic Signal Processing.- 3. Flow Microfluorometry (FMF).- 3.1. FMF II.- 3.2. Beam Optics.- 3.3. Signal Processing.- 3.4. Results.- 3.5. Resolution.- 4. Biological Applications of FMF II.- 4.1. Life Cycle Analysis and Relative DNA Quantitation.- 4.2. Chemotherapeutic Agent Effects.- 4.3. Cell-Surface Architecture Studies.- 4.4. Fluorescein-Labeled Antigen¿Antibody Measurements.- 5. Preparation of Cell Samples for FMF Analysis.- 5.1. Cell Dispersal and Fixation.- 5.2. DNA Staining Procedures.- 5.3. Protein Staining.- 6. Multiparameter Cell Analysis and Sorting.- 6.1. Deillegalscription of the Multiparameter Cell Sorter (MPS-1).- 6.2. Electronic Cell Sensing.- 6.3. Fluorescence Detection.- 6.4. Light Scattering.- 6.5. Multiparameter Signal Processing.- 6.6. Multiparameter Analysis and Sorting Applications.- 6.7. Tumor Cell Identification and Separation.- 6.8. White Blood Cell Differential.- 7. Light Scattering.- 7.1. Models for Mammalian Cells.- 7.2. Exact Electromagnetic Theory Considerations.- 7.3. Experimental Verification for Live Mammalian Cells in Suspension.- 7.4. Flow Microphotometric Measurements.- 8. Future Applications.- 8.1. Instrumentation.- 8.2. Biological Applications.- Acknowledgments.- References.- 6 Biological Damage Resulting from Thermal Pulses.- 1. Introduction.- 2. Calculation of the Temperature Distribution.- 3. Chemical Rate Equations.- 4. Biological Results at Elevated Temperatures.- Acknowledgments.- References.- 7 Laser Protective Eyewear.- 1. Introduction.- 2. Applications.- 3. Laser Viewing Enhancement Goggles.- 4. Parameters of Laser Eye Protection.- 4.1. Wavelength.- 4.2. Optical Density.- 4.3. Laser Beam Irradiance or Radiant Exposure.- 4.4. Visual Transmittance of Eyewear.- 4.5. Laser Filter Damage Threshold (Maximum Irradiance).- 4.6. Filter Curvature.- 5. Methods of Construction.- 6. Selecting Appropriate Eyewear.- 7. Commercial Sources of Laser Eye Protection.- 8. Testing Laser Eye Protection.- 9. Marking of Eye Protection.- 10. Eye Protection for Infrared Lasers.- 11. Eye Protection for Pump Lamps and Tunable Wavelength Lasers.- 12. Polarizing Filters.- 13. Dynamic Eye Protection Devices.- 14. Future Developments.- References.- 8 Lasers in Surgery.- 1. Introduction.- 1.1. Scope of Review.- 1.2. Characteristics of Lasers.- 1.3. Interaction of Radiation with Tissue.- 2. Critical Review and History of Laser Surgery.- 2.1. Pulsed Ruby and Neodymium Laser Surgery.- 2.2. Carbon Dioxide Laser Surgery.- 3. Carbon Dioxide Laser Surgery.- 3.1. Instrumentation.- 3.2. Surgical Applications¿Clinical and Experimental.- 4. Surgical Applications of Other Lasers.- 4.1. Ruby Laser.- 4.2. Argon Ion Laser.- 4.3. Neodymium in Yttrium, Aluminum, Garnet (Nd YAG).- 5. The Future of Lasers in Surgery.- 6. Summary and Conclusions.- Acknowledgments.- References.- 9 The Carbon Dioxide Laser in Clinical Surgery.- 1. Introduction.- 1.1. Skin Healing.- 1.2. Skin Grafts.- 1.3. Hemostatic Effect.- 1.4. Postoperative Pain.- 2. Observations on the Applicability of the Carbon Dioxide Laser in Specific Clinical Conditions.- 2.1. Burns.- 2.2. Mastopathy.- 2.3. Hemangioma.- 2.4. Cervical Erosions.- 2.5. Hemorrhoids.- 2.6. Malignant Tumors.- 2.7. Rectal Carcinoma.- 3. Design and Development of a New Carbon Dioxide Surgical Laser.- 3.1. The Laser and Optical Bench.- 3.2. The Articulated Arm and Balancing System.- 3.3. The Manipulator.- 3.4. Safety Measures.- 3.5. Mobility and Compactness of the System.- 3.6. Remote Control.- 3.7. Attachments for Specific Surgical Procedures.- 4. Conclusions.- References.- 10 The Formulation of Protection Standards for Lasers.- 1. Introduction.- 1.1. Application of the Protection Standards.- 1.2. The Need for Regulations.- 2. Analysis of Safety Regulations in Massachusetts.- 2.1. Philosophy of Laser Regulation and Registration.- 2.2. Definitions.- 2.3. Exemptions and Exceptions.- 2.4. Data Collection.- 2.5. Protection Standards.- 2.6. Measurements for Conformance and Survey.- 2.7. Regulation.- 2.8. Specific Precautions for Outdoor Installations.- 2.9. Personnel Protection.- 2.10. Medical Surveillance.- 2.11. Appendix to Massachusetts Board of Health Rules and Regulations.- 3. The Outlook for Federal Regulations.- 4. State Regulations in the United States.- 5. Protection Standards for Retinal Hazards: Considerations of Biological Data.- 5.1. Useful Presentation of Biological Data.- 5.2. Sources of Error in the Biological Data.- 5.3. Laser Accident Data.- 5.4. Combining Data Points.- 5.5. Standards for Different Wavelengths.- 6. The Selection of Proper Format and Levels¿Neither Too Detailed Nor Too Conservative.- 6.1. The Degree of Safety.- 6.2. Military Protection Standards.- 6.3. Specification of Protection Standards.- 6.4. Retinal Exposure Levels and Corneal Exposure Levels.- 6.5. Specification of Pupil Size.- 7. Extrapolation.- 7.1. Interpreting the Biological Data.- 7.2. From Cornea to Retina and Back Again.- 7.3. Relation Between Different Retinal Image Sizes and Associated Retinal Injury Thresholds.- 7.4. Thermal Models.- 7.5. Retinal Detachment.- 7.6. Melanin Granules in Pigment Epithelium as Local Hot Spots.- 7.7. Other Factors Influencing Laser Injury Spot Size: Biological and Physical Amplification.- 7.8. Infrared and Ultraviolet Laser Protection Standards.- 8. The ANSI-Z-136 Standards.- 8.1. Formulation of Protection Standard Exposure Levels.- 8.2. Limiting Apertures.- 8.3. Extended Sources.- 8.4. Correction Factor A (CA).- 8.5. Repetitively Pulsed Lasers.- 8.6. Laser Hazard Classification.- 9. Other Standards.- 10. Present Problems and Future Plans.- References.- 11 Dentistry and the Laser.- 1. Introduction.- 1.1. Anatomy of Dental Structures.- 1.2. Dental Diseases.- 2. Early Laser Investigations.- 3. Investigations Leading to Laser-Induced Caries Inhibition.- 3.1. Ruby Laser.- 3.2. Pulsed Carbon Dioxide Laser.- 4. Laser Effects on Dental Soft Tissue.- 5. Potential Applications.- 6. Summary.- Acknowledgments.- References.- Author Index.


Klappentext



In the intervening years since the publication of Volume I, the develop­ ment of new uses for the various types of lasers has proceeded at a rate more rapid than even the most fanciful dreamers envisioned. Of course, the main effort has been on the laser itself-new wavelengths, shorter and longer time domains for pulses, increases in power, and, most important, greater reliability. In its first stage the laser was described as a solution in search of a problem. The production of holograms was one problem whose solution seemed to involve large number of lasers. However that proposal had its own difficulties, for the hologram itself was described as a solution searching for a problem. But all of that now is a chapter from ancient history . On the current scene the laser is used in industrial pro­ duction lines, as a classroom item at all levels of education, and in com­ mercial usage such that the public is generally exposed to the laser devices themselves. Trial runs have been made, e. g. , of laser-based supermarket checkout devices and as commercial exploitation of this item begins, cer­ tainly many more similar adaptations will follow. However, the shift in emphasis from research usage of lasers to de­ velopment and production has been relative rather than absolute. The use of the laser in research has not lessened; rather it has grown at as fast a pace. Yet a similar trend is seen there also.




Springer Book Archives



Datenschutz-Einstellungen