Conventional optical science and technology have been restricted by the diffraction limit from reducing the sizes of optical and photoruc devices to nanometric dimensions. Thus, the size of optical integrated circuits has been incompatible with that of their counterpart, integrated electronic circuits, which have much smaller dimensions. This book provides potential ideas and methods to overcome this difficulty. Near-field optics has developed very rapidly from around the middle 1980s after preliminary trials in the microwave frequency region, as proposed as early as 1928. At the early stages of this development, most technical efforts were devoted to realizing super-high-resolution optical microscopy beyond the diffraction limit. However, the possibility of exploiting the optical near-field, phenomenon of quasistatic electromagnetic interaction at subwavelength distances between nanometric particles has opened new ways to nanometric optical science and technology, and many applications to nanometric fabrication and manipulation have been proposed and implemented. Building on this historical background, this book describes recent progress in near-field optical science and technology, mainly using research of the author's groups. The title of this book, Near-Field Nano-Optics-From Basic Principles to Nano-Fabrication and Nano-Photonics, implies capabilities of the optical near field not only for imaging/microscopy, but also for fabrication/manipulation/proc essing on a nanometric scale.
1. Introduction.- 1.1. Near-Field Optics and Photonics.- 1.1.1. Optical Processes and Electromagnetic Interactions.- 1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM).- 1.2.1. From Interference- to Interaction-Type Optical Microscopy.- 1.2.2. Development of Near-Field Optical Microscopy and Related Techniques.- 1.3. General Features of Optical Near-Field Problems.- 1.3.1. Optical Processes and the Scale of Interest.- 1.3.2. Effective Fields and Interacting Subsystems.- 1.3.3. Electromagnetic Interaction in a Dielectric System.- 1.3.4. Optical Near-Field Measurements.- 1.4. Theoretical Treatment of Optical Near-Field Problems.- 1.4.1. Near-Field Optics and Inhomogeneous Waves.- 1.4.2. Field-Theoretic Treatment of Optical Near-Field Problems.- 1.4.3. Explicit Treatment of Field-Matter Interaction.- 1.5. Remarks on Near-Field Optics and Outline of This Book.- 1.5.1. Near-Field Optics and Related Problems.- 1.5.2. Outline of This Book.- 1.6. References.- 2. Principles of Near-Field Optical Microscopy.- 2.1. An Example of Near-Field Optical Microscopy.- 2.2. Construction of the NOM System.- 2.2.1. Building Blocks of the NOM System.- 2.2.2. Environmental Conditions.- 2.2.3. Functions of the Building Blocks.- 2.3. Theoretical Description of Near-Field Optical Microscopy.- 2.3.1. Basic Character of the NOM Process.- 2.3.3. Demonstration of Localization in the Near-Field Interaction.- 2.3.4. Representation of the Spatial Localization of an Electromagnetic Event.- 2.3.5. Model Description of a Local Electromagnetic Interaction.- 2.4. Near-Field Problems and the Tunneling Process.- 2.4.1. Bardeen's Description of Tunneling Current in STM.- 2.4.2. Comparison of the Theoretical Aspects of NOM and STM.- 2.5. References.- 3. Instrumentation.- 3.1. Basic Systems of a Near-Field Optical Microscope.- 3.1.1. Modes of Operation.- 3.1.2. Position Control of the Probe.- 3.1.3. Mechanical Components.- 3.1.4. Noise Sources Internal to the NOM.- 3.1.5. Operation under Special Circumstances.- 3.2. Light Sources.- 3.2.1. Basic Properties of Lasers.- 3.2.2. Characteristics of CW Lasers.- 3.2.3. Additional Noise Properties of CW Lasers.- 3.2.4. Short-Pulse Generation.- 3.2.5. Nonlinear Optical Wavelength Conversion.- 3.3. Light Detection and Signal Amplification.- 3.3.1. Detector.- 3.3.2. Signal Detection and Amplification.- 3.4. References.- 4. Fabrication of Probes.- 4.1. Sharpening of Fibers by Chemical Etching.- 4.1.1. A Basic Sharpened Fiber.- 4.1.2. A Sharpened Fiber with Reduced-Diameter Cladding.- 4.1.3. A Pencil-Shaped Fiber.- 4.1.4. A Flattened-Top Fiber.- 4.1.5. A Double-Tapered Fiber.- 4.2. Metal Coating and Fabrication of a Protruded Probe.- 4.2.1. Removal of Metallic Film by Selective Resin Coating.- 4.2.2. Removal of Metallic Film by Nanometric Photolithography.- 4.3. Other Novel Probes.- 4.3.1. Functional Probes.- 4.3.2. Optically Trapped Probes.- 4.4. References.- 5. Imaging Experiments.- 5.1. Basic Features of the Localized Evanescent Field.- 5.1.1. Size-Dependent Decay Length of the Field Intensity.- 5.1.2. Manifestation of the Short-Range Electromagnetic Interaction.- 5.1.3. High Discrimination Sensitivity of the Evanescent Field Intensity Normal to the Surface.- 5.2. Imaging Biological Samples.- 5.2.1. Imaging by the C-Mode.- 5.2.2. Imaging by the I-Mode.- 5.3. Spatial Power Spectral Analysis of the NOM Image.- 5.4. References.- 6. Diagnostics and Spectroscopy of Photonic Devices and Materials.- 6.1. Diagnosing a Dielectric Optical Waveguide.- 6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide.- 6.2.1. Photoluminescence and Electroluminescence Spectroscopy.- 6.2.2. Photocurrent Measurement by Multiwavelength NOM.- 6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot.- 6.4. Imaging of Other Materials.- 6.4.1. Fluorescence Detection from Dye Molecules.- 6.4.2. Spectroscopy of Solid-State Materials.- 6.5. References.- 7. Fabrication and Manipulation.- 7.1. Fabric
Springer Book Archives