Based on the work of MIT graduate students Alice Wang and Benton Calhoun, this book surveys the field of sub-threshold and low-voltage design and explores such aspects of sub-threshold circuit design as modeling, logic and memory circuit design. One important chapter of the book is dedicated to optimizing energy dissipation - a key metric for energy constrained designs. This book also includes invited chapters on the subject of analog sub-threshold circuits.
Origins of Weak Inversion (or Sub-threshold) Circuit Design.- Survey of Low-voltage Implementations.- Minimizing Energy Consumption.- EKV Model of the MOS Transistor.- Digital Logic.- Sub-threshold Memories.- Analog Circuits in Weak Inversion.- System Examples.
1
Inhaltsverzeichnis
Introduction.- History of Sub-Threshold/Low-Voltage Design.- Optimum Energy.- Digital Logic-CMOS.- Memories.- Analog.- Systems.- Conclusions.
Klappentext
Based on the work of MIT graduate students Alice Wang and Benton Calhoun, this book surveys the field of sub-threshold and low-voltage design and explores such aspects of sub-threshold circuit design as modeling, logic and memory circuit design. One important chapter of the book is dedicated to optimizing energy dissipation - a key metric for energy constrained designs. This book also includes invited chapters on the subject of analog sub-threshold circuits.
Includes a survery of the field of sub-threshold and low-voltage design
An important chapter on optimizing energy dissipation is included
Also included is an invited chapter on analog sub-threshold circuits