Proceedings of the NATO Advanced Study Institute on Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, held in Montreal, Canada, from 21 June to 2 July 2004.
The papers collected in this volume are contributions to the 43rd session of the Seminaire de mathematiques superieures (SMS) on "Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology." This session took place at the Universite de Montreal in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger , our administrative assistant, for her help with the organi- tion and Mr. Andre Montpetit, our technical editor, for his help in the preparation of the volume.
Preface.Contributors. Lectures on the Morse Complex for Infinite-Dimensional Manifolds; A. Abbondandolo and P. Majer.-1. A few facts from hyperbolic dynamics.-1.1 Adapted norms .-1.2 Linear stable and unstable spaces of an asymptotically hyperbolic path.-1.3 Morse vector fields.- 1.4 Local dynamics near a hyperbolic rest point ; 1.5 Local stable and unstable manifolds.- 1.6 The Grobman - Hartman linearization theorem.-1.7 Global stable and unstable manifolds.- 2 The Morse complex in the case of finite Morse indices.- 2.1 The Palais - Smale condition.-2.2 The Morse - Smale condition .-2.3 The assumptions .- 2.4 Forward compactness.- 2.5 Consequences of compactness and transversality.- 2.6 Cellular filtrations.- 2.7 The Morse complex.- 2.8 Representation of $\delta$ in terms of intersection numbers.- 2.9 How to remove the assumption (A8).- 2.10 Morse functions on Hilbert manifolds.-2.11 Basic results in transversality theory .- 2.12 Genericity of the Morse - Smale condition.-2.13 Invariance of the Morse complex.- 3 The Morse complex in the case of infinite Morse indices.- 3.1 The program.-3.2 Fredholm pairs and compact perturbations of linear subspaces.- 3.3 Finite-dimensional intersections.-3.4 Essential subbundles.- 3.5 Orientations.- 3.6 Compactness .- 3.7 Two-dimensional intersections .-3.8 The Morse complex.- Bibliographical note.- Notes on Floer Homology and Loop Space Homology; A. Abbondandolo and M. Schwarz.- 1 Introduction.- 2 Main result.-2.1 Loop space homology.-2.2 Floer homology for the cotangent bundle.- 3 Ring structures and ring-homomorphisms.-3.1 The pair-of-pants product.- 3.2 The ring homomorphisms between free loop space Floer homology and based loop space Floer homology and classical homology.-4 Morse-homology on the loop spaces $\Lambda$Q and $\Omega$Q, and the isomorphism.-5 Products in Morse-homology .-5.1 Ring isomorphism between Morse homology and Floer homology.- Homotopical Dynamics in Symplectic Topology; J.-F. Barraud and O. Cornea.- 1 Introduction .-2 Elements of Morse theory .-2.1 Connecting manifolds.-2.2 Operations.-3 Applications to symplectic topology.- 3.1 Bounded orbits .-3.2 Detection of pseudoholomorphic strips and Hofer's norm.- Morse Theory, Graphs, and String Topology; R. L. Cohen.-1 Graphs, Morse theory, and cohomology operations.-2 String topology .-3 A Morse theoretic view of string topology.- 4 Cylindrical holomorphic curves in the cotangent bundle.- Topology of Robot Motion Planning; M. Farber.-1.Introduction .-2 First examples of configuration spaces .-3 Varieties of polygonal linkages.-3.1 Short and long subsets .-3.2 Poincaré polynomial of M(a) .-4 Universality theorems for configuration spaces .-5 A remark about configuration spaces in robotics .-6 The motion planning problem.-7 Tame motion planning algorithms.-8 The Schwarz genus.- 9 The second notion of topological complexity.-10 Homotopy invariance.- 11 Order of instability of a motion planning algorithm.-12 Random motion planning algorithms.- 13 Equality theorem.-14 An upper bound for TC(X).-15 A cohomological lower bound for TC(X) .-16 Examples .-17 Simultaneous control of many systems.-18 Another inequality relating TC(X) to the usual category .-19 Topological complexity of bouquets.-20 A general recipe to construct a motion planning algorithm.-21 How difficult is to avoid collisions in $\mathbb{R}$ m ? .-22 The case m = 2.- 23 TC(F($\mathbb{R}$ m ; n) in the case m $\geq$ 3 odd .- 24 Shade.-25 Illuminating the complement of the braid arrangement .-26 A quadratic motion planning algorithm in F($\mathbb{R}$ m ; n).-27 Configuration spaces of graphs.-28 Motion planning in projective spaces .-29 Nonsingular maps.- 30 TC(($\mathbb{R}$P n ) and the immersion problem.-31 Some open problems.- Application of Floer Homology of Langrangian Submanifolds to Symplectic Topology;K. Fukaya.- 1 Introduction.- 2 Lagrangian submanifold of $\mathbb{C}$ n .-3 Perturbing Cauchy - Riemann equation.- 4 Maslov index of Lagrangian submanifold
1
Klappentext
The papers collected in this volume are contributions to the 43rd session of the Seminaire ¿ de mathematiques ¿ superieures ¿ (SMS) on "Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology." This session took place at the Universite ¿ de Montreal ¿ in July 2004 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together young researchers from various parts of the world and to present to them some of the most signi cant recent advances in these areas. More than 77 mathematicians from 17 countries followed the 12 series of lectures and participated in the lively exchange of ideas. The lectures covered an ample spectrum of subjects which are re ected in the present volume: Morse theory and related techniques in in nite dim- sional spaces, Floer theory and its recent extensions and generalizations, Morse and Floer theory in relation to string topology, generating functions, structure of the group of Hamiltonian di?eomorphisms and related dynamical problems, applications to robotics and many others. We thank all our main speakers for their stimulating lectures and all p- ticipants for creating a friendly atmosphere during the meeting. We also thank Ms. Diane Belanger ¿ , our administrative assistant, for her help with the organi- tion and Mr. Andre ¿ Montpetit, our technical editor, for his help in the preparation of the volume.
Contains up-to date surveys and presentations of some of the "hottest" topics in the subject
Some recent significant results are first presented here
Among the authors are some of the most important contributors to the field in the last 15 years