reine Buchbestellungen ab 5 Euro senden wir Ihnen Portofrei zuDiesen Artikel senden wir Ihnen ohne weiteren Aufpreis als PAKET

XUV Pump-Probe Experiments on Diatomic Molecules
(Englisch)
Tracing the Dynamics of Electron Rearrangement and Interatomic Coulombic Decay
Kirsten Schnorr

Print on Demand - Dieser Artikel wird für Sie gedruckt!

86,45 €

inkl. MwSt. · Portofrei
Dieses Produkt wird für Sie gedruckt, Lieferzeit ca. 14 Werktage
Menge:

XUV Pump-Probe Experiments on Diatomic Molecules

Medium
Seiten
Erscheinungsdatum
Auflage
Erscheinungsjahr
Sprache
Vertrieb
Kategorie
Buchtyp
Warengruppenindex
Detailwarengruppe
Laenge
Breite
Hoehe
Gewicht
Herkunft
Relevanz
Referenznummer
Moluna-Artikelnummer

Produktbeschreibung

Nominated as an outstanding Ph.D. thesis by Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Introductory chapters with numerous clear illustrations make the topic accessible to non-experts

Presents measurement of novel relaxation mechanism with overview of theoretical treatment


This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
Introduction.- Photoionization and Interatomic Coulombic Decay.- Free-Electron Lasers.- Experimental Setup.- Data Analysis.- Ionization Dynamics of I2 in XUV and IR Laser Pulses.- ICD Lifetime in Ne2.- Conclusions and Outlook.- Appendices.
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne 2 ). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
Introduction.- Photoionization and Interatomic Coulombic Decay.- Free-Electron Lasers.- Experimental Setup.- Data Analysis.- Ionization Dynamics of I 2 in XUV and IR Laser Pulses.- ICD Lifetime in Ne 2 .- Conclusions and Outlook.- Appendices.

Inhaltsverzeichnis

Introduction.- Photoionization and Interatomic Coulombic Decay.- Free-Electron Lasers.- Experimental Setup.- Data Analysis.- Ionization Dynamics of I2 in XUV and IR Laser Pulses.- ICD Lifetime in Ne2.- Conclusions and Outlook.- Appendices.


Klappentext

This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.




Nominated as an outstanding Ph.D. thesis by Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Introductory chapters with numerous clear illustrations make the topic accessible to non-experts

Presents measurement of novel relaxation mechanism with overview of theoretical treatment

Includes supplementary material: sn.pub/extras

leseprobe



Datenschutz-Einstellungen